$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

CFD analysis of broaching for a model surface combatant with explicit simulation of moving rudders and rotating propellers

Computers & fluids, v.53, 2012년, pp.117 - 132  

Carrica, P.M. (IIHR - Hydroscience & Engineering, The University of Iowa, Iowa City, IA 52242, USA) ,  Sadat-Hosseini, H. ,  Stern, F.

Abstract AI-Helper 아이콘AI-Helper

The mechanisms of broaching in following regular waves are studied by analysis of free model computations. Simulations of the fully appended ONR Tumblehome model DTMB 5613 are performed with the ship hydrodynamics code CFDShip-Iowa v4.5 and validated against experiments of an auto-piloted, ...

주제어

참고문헌 (37)

  1. Belenky VL, Weems KM, Lin WM. Numerical procedure for evaluation of capsizing probability with split time method. In: Proceedings of the 27th symposium on naval hydrodynamics, Seoul, Korea; 2008. 

  2. J Ship Res Bhushan 53 179 2009 10.5957/jsr.2009.53.4.179 Model- and full-scale URANS simulations of Athena resistance, powering, seakeeping, and 5415 maneuvering 

  3. 10.2514/6.2006-1148 Boger DA, Dreyer JJ. Prediction of hydrodynamic forces and moments for underwater vehicles using overset grids. In: AIAA paper 2006-1148. 44th AIAA Aerospace Sciences Meeting, Reno, NV, USA; 2006. 

  4. Bugalski T, Hoffman, P. Numerical simulation of the interaction between ship hull and rotating propeller. In: CFD workshop Gothenburg 2010, Gothenburg, Sweden; 2010. 

  5. Califano A, Steen S. Analysis of different propeller ventilation mechanisms by means of RANS simulations. In: First int symp marine propulsors, Trondheim Norway; 2009. 

  6. Int J Numer Meth Fluids Carrica 53 229 2007 10.1002/fld.1279 An unsteady single-phase level set method for viscous free surface flows 

  7. Comput Fluids Carrica 36 1415 2007 10.1016/j.compfluid.2007.01.007 Ship motions using single-phase level set with dynamic overset grids 

  8. J Mar Sci Technol Carrica 13 395 2008 10.1007/s00773-008-0022-5 URANS analysis of a broaching event in irregular quartering seas 

  9. Carrica PM, Stern F. DES simulations of KVLCC1 in turn and zigzag maneuvers with moving propeller and rudder. in: SIMMAN 2008, Copenhagen, Denmark; 2008. 

  10. J Mar Sci Technol Carrica 15 316 2010 10.1007/s00773-010-0098-6 Self-propulsion computations using speed controller and discretized propeller with dynamic overset grids 

  11. Comput Fluids Carrica 39 1095 2010 10.1016/j.compfluid.2010.02.002 Large-scale DES computations of the forward speed diffraction and pitch and heave problems for a surface combatant 

  12. Appl Ocean Res Carrica 4 309 2011 10.1016/j.apor.2011.07.003 Computations of self-propulsion free to sink and trim and of motions in head waves of the KRISO Container Ship (KCS) model 

  13. Comput Fluids Castro 51 35 2011 10.1016/j.compfluid.2011.07.005 Full scale self-propulsion computations using discretized propeller for the KRISO Container Ship KCS 

  14. J Turbulence Celik 7 1 2006 10.1080/14685240600794379 Assessment measures for URANS/DES/LES: an overview with applications 

  15. J Fluids Eng Celik 131 031102 2009 10.1115/1.3059703 Assessment measures for LES applications 

  16. Fossen 1994 Guidance and control of ocean vehicles 

  17. Greve M, Abdel-Maksoud M, Eder S, De Causmaecker. Steady viscous flow calculation around the KCS model with and without propeller under consideration of the free-surface. In: CFD workshop Gothenburg 2010, Gothenburg, Sweden; 2010. 

  18. Int J Numer Meth Fluids Huang 58 591 2008 10.1002/fld.1758 Semi-coupled air/water immersed boundary approach for curvilinear dynamic overset grids with application to ship hydrodynamics 

  19. Jin W, Gao Q, Vassalos D. The prediction of KCS resistance and self-propulsion by RANSE. In: CFD workshop Gothenburg 2010, Gothenburg, Sweden; 2010. 

  20. Lee JH, Rhee SH. Flexible CFD meshing strategy for prediction of ship resistance and propulsion performance. In: CFD workshop Gothenburg 2010, Gothenburg, Sweden; 2010. 

  21. Lübke LO. Numerical simulation of the flow around the propelled KCS. In: CFDWS05, Tokyo, Japan; 2005. 

  22. Lyzenga D, Nwogu O. Shipboard radar measurements of ocean waves for real-time prediction of nonlinear ship motions. In: Proc 28th symp naval hydrodynamics, Pasadena, CA; 2010. 

  23. AIAA J Menter 32 1598 1994 10.2514/3.12149 Two-equation eddy viscosity turbulence models for engineering applications 

  24. Ocean Eng Mousaviraad 37 653 2010 10.1016/j.oceaneng.2010.01.001 Development and validation of harmonic wave group single-run procedure for RAO with comparison to regular wave and transient wave group procedures using URANS 

  25. 10.2514/6.2005-5117 Noack R. Suggar: a general capability for moving body overset grid assembly. In: AIAA paper 2005-5117. 17th AIAA computational fluid dynamics conf., Toronto, ON, Canada; 2005. 

  26. Pankajakshan R, Remotigue S, Taylor L, Jiang M, Briley W, Whitfield D. Validation of control-surface induced submarine maneuvering simulations using UNCLE. In: Proc 24th symp naval hydrodynamics, Fukuoka, Japan; 2004. 

  27. Ocean Eng Sadat-Hosseini 38 88 2011 10.1016/j.oceaneng.2010.09.016 CFD, system-based and EFD study of ship dynamic instability events: surf riding, periodic motion and broaching 

  28. J Ship Res Spyrou 41 210 1997 10.5957/jsr.1997.41.3.210 Dynamic stability in quartering seas - Part III. Non-linear effects on periodic motions 

  29. J Ship Res Stern 32 246 1988 10.5957/jsr.1988.32.4.246 A viscous-flow approach to the computation of propeller-hull interaction 

  30. Travin 2002 Advances in LES of complex flows Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows 

  31. J Japan Soc Naval Arch Ocean Eng Umeda 4 155 2006 Manoeuvring and control of a high-speed slender vessel with twin screws and twin rudders in following and quartering seas 

  32. J Japan Soc Naval Arch Ocean Eng Umeda 8 123 2008 Model experiments on extreme motions of a wave-piercing tumblehome vessel in following and quartering waves 

  33. 10.1115/OMAE2007-29516 Venkatesan G, Clark W. Submarine maneuvering simulations of ONR body 1. In: Proc OMAE2007, San Diego, CA; 2007. 

  34. 10.5957/PSS-2000-18 Warren CL, Taylor TE, Kerwin JE. A coupled viscous/potential-flow method for the prediction of propeller-induced maneuvering forces. In: SNAME propellers/shafting symp., Virginia Beach, VA; 2000. 

  35. Wu Q, Feng XM, Yu H, Wang JB, Cai RQ, Chen XL. Prediction of ship resistance and propulsion performance using multi-block structured grids. In: CFD workshop Gothenburg 2010, Gothenburg, Sweden; 2010. 

  36. J Turbulence Xing 8 1 2007 10.1080/14685240701537891 Unsteady free-surface wave-induced separation: analysis of turbulent structures using detached eddy simulation and single-phase level set method 

  37. Yamamura S, Maki A, Umeda N, Sano H. Numerical study towards physics-based criteria for avoiding broaching and capsizing in following/quartering waves. In: International workshop on dynamic stability considerations in ship design, Ilawa, Poland; 2009. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로