$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

CO2 capture using monoethanolamine (MEA) aqueous solution: Modeling and optimization of the solvent regeneration and CO2 desorption process 원문보기

Energy : technologies, resources, reserves, demands, impact, conservation, management, policy, v.45 no.1, 2012년, pp.1042 - 1058  

Mores, P. ,  Scenna, N. ,  Mussati, S.

Abstract AI-Helper 아이콘AI-Helper

This paper deals with the simultaneously optimization of operating conditions (pressures, temperatures and flow-rates) and dimensions (diameter and height) of the amine regeneration unit in the post-combustion CO2 capture process. The proposed model takes into account the effect of kinetic reactions...

주제어

참고문헌 (46)

  1. Energy Procedia Zhang 4 1660 2011 10.1016/j.egypro.2011.02.038 RSAT™ process development for post-combustion CO2 capture: scale-up from laboratory and pilot test data to commercial process design 

  2. Chemical Engineering Science Singh 66 4521 2011 10.1016/j.ces.2011.06.008 Kinetics study of carbon dioxide absorption in aqueous solutions of 1,6-hexamethyldiamine (HMDA) and 1,6-hexamethyldiamine, N, N0 di-methyl (HMDA, N, N0) 

  3. Energy Procedia Mangalapally 1 1 963 2009 10.1016/j.egypro.2009.01.128 Pilot plant experimental studies of post combustion CO2 capture by reactive absorption with MEA and new solvents 

  4. Ind. Eng. Chem. Res. Kim 46 5803 2007 10.1021/ie0616489 Heat of absorption of carbon dioxide (CO2) in monoethanolamine (MEA) and 2-(aminoethyl) ethanolamine (AEEA) solutions 

  5. Chemical Engineering and Processing Hasib-ur-Rahman 49 313 2010 10.1016/j.cep.2010.03.008 Ionic liquids for CO2 capture-development and progress 

  6. Energy Procedia Rayer 4 140 2011 10.1016/j.egypro.2011.01.034 Kinetics of the reaction of carbon dioxide (CO2) with cyclic amines using the stopped-flow technique 

  7. Chemical Engineering Science vanHolst 64 59 2009 10.1016/j.ces.2008.09.015 Kinetic study of CO2 with various amino acid salts in aqueous solution 

  8. International Journal of Greenhouse Gas Control Feng Qin 4 729 2010 10.1016/j.ijggc.2010.04.010 Kinetics of CO2 absorption in aqueous ammonia solution 

  9. International Journal of Greenhouse Gas Control Li 5 5 1119 2001 10.1016/j.ijggc.2011.07.009 Viscosities, thermal conductivities and diffusion coefficients of CO2 mixtures: review of experimental data and theoretical models 

  10. Energy Procedia I Sakwattanapong 217 2009 10.1016/j.egypro.2009.01.031 Reaction rate of CO2 in aqueous MEA-AMP solution: experiment and modeling 

  11. Chemical Engineering and Processing: Process Intensification Gong 45 8 652 2008 10.1016/j.cep.2006.01.009 Experiments and simulation of CO2 removal by mixed amines in a hollow fiber membrane module 

  12. Dugas ER. Pilot Plant Study of Carbon Dioxide Capture by Aqueous onoethanolamine. M.S.E. Thesis, University of Texas at Austin; 2006. 

  13. Energy Procedia Plaza 4 1593 2011 10.1016/j.egypro.2011.02.029 Modeling pilot plant results for CO2 capture by aqueous piperazine 

  14. Computer Aided Chemical Engineering Kale 29 61 2011 10.1016/B978-0-444-53711-9.50013-4 Simulation of reactive absorption: model validation for CO2-MEA system 

  15. Energy Mofarahi 33 8 1311 2008 10.1016/j.energy.2008.02.013 Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine 

  16. Energy Bernier 35 2 1121 2010 10.1016/j.energy.2009.06.037 Multi-objective design optimization of a natural gas-combined cycle with carbon dioxide capture in a life cycle perspective 

  17. Energy Moller 32 4 353 2007 10.1016/j.energy.2006.07.022 On the off-design of a natural gas-fired combined cycle with CO2 capture 

  18. Energy Harkin 41 1 228 2012 10.1016/j.energy.2011.06.031 Using multi-objective optimisation in the design of CO2 capture systems for retrofit to coal power stations 

  19. Energy Geuzebroek 29 9-10 1241 2004 10.1016/j.energy.2004.03.083 Exergy analysis of alkanolamine-based CO2 removal unit with AspenPlus 

  20. Energy Perez-Fortes 34 10 1721 2009 10.1016/j.energy.2009.05.012 Conceptual model and evaluation of generated power and emissions in an IGCC plant 

  21. Chemical Engineering Science Aroonwilas 58 17 4037 2003 10.1016/S0009-2509(03)00315-4 Mathematical modelling of mass-transfer and hydrodynamics in CO2 absorbers packed with structured packings 

  22. Energy Procedia Dorao 1 1 4257 2009 10.1016/j.egypro.2009.02.237 An improved flowsheet simulation approach for advanced CO2 absorption process design and optimization 

  23. Applied Energy Sipocz 88 7 2368 2011 10.1016/j.apenergy.2011.01.013 The use of artificial neural network models for CO2 capture plants 

  24. Chemical Engineering Science Tobiesen 63 10 2641 2008 10.1016/j.ces.2008.02.011 Experimental validation of a rigorous desorber model for CO2 post-combustion capture 

  25. Chemical Engineering Research and Design Khan 89 9 1600 2011 10.1016/j.cherd.2010.09.020 Modelling reactive absorption of CO2 in packed columns for post-combustion carbon capture applications 

  26. Energy Procedia Oexmann 4 1276 2011 10.1016/j.egypro.2011.01.184 Semi-empirical model for the direct simulation of power plant with integrated post-combustion CO2 capture processes by wet chemical absorption 

  27. Computer Aided Chemical Engineering Cormos 29 1185 2011 10.1016/B978-0-444-54298-4.50016-7 Evaluation of CO2 absorption-desorption cycle by dynamic modeling and simulation 

  28. Energy Procedia Zhou 4 2066 2011 10.1016/j.egypro.2011.02.089 From neural network to neuro-fuzzy modeling: applications to the carbon dioxide capture process 

  29. Energy Pellegrini 35 851 2010 10.1016/j.energy.2009.08.011 Comparative study of chemical absorbents in postcombustion CO2 capture 

  30. Carbon Management Liang 2 3 265 2011 10.4155/cmt.11.19 Part 1: design, modeling and simulation of post-combustion CO2 capture systems using reactive solvents 

  31. Chemical Engineering Research and Design Rodriguez 89 9 1763 2011 10.1016/j.cherd.2010.11.009 Optimization of post-combustion CO2 process using DEA-MDEA mixtures 

  32. Chemical Engineering Research and Design Mores 89 9 1587 2011 10.1016/j.cherd.2010.10.012 Post-combustion CO2 capture process: equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution 

  33. Computer Aided Chemical Engineering Lawal 27 1725 2009 10.1016/S1570-7946(09)70678-9 Dynamic modeling and simulation of CO2 chemical absorption process for coal-fired power plants 

  34. Brooke 1996 GAMS - a user’s guide (release 2.25) 

  35. Drud 1992 CONOPT, A GRG code for large scale nonlinear optimization. Reference manual 

  36. Journal of Chemical Engineering of Japan Onda 1 56 1968 10.1252/jcej.1.56 Mass transfer coefficients between gas and liquid phases in packed columns 

  37. Industrial & Engineering Chemistry Process Design and Development Bravo 21 162 1982 10.1021/i200016a028 Generalized correlation for mass transfer in packed distillation columns 

  38. Oyenekan B. Modeling of strippers for CO2 capture by aqueous amines. Ph.D. Dissertation, University of Texas at Austin; 2007. 

  39. Hilliard M.D. A predictive thermodynamic model for an aqueous blend of potassium carbonate, piperazine and monoethanolamine for carbon dioxide capture from flue gas. Ph.D. Dissertation, University of Texas of Austin; 2008. 

  40. Chemical Engineering Science Aboudheir 58 5195 2003 10.1016/j.ces.2003.08.014 Kinetic of reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethenolamine solutions 

  41. Industrial & Engineering Chemistry Research Liu 38 2080 1999 10.1021/ie980600v Representing vapor-liquid equilibrium for an aqueous MEA-CO2 system using the electrolyte nonrandom-two-liquid model 

  42. Industrial Engineering Chemical Fundamentals Peng 15 59 1976 10.1021/i160057a011 A new two constant equation of state 

  43. Greer T. Modeling and simulation of post combustion CO2 capturing. Ph. D. Thesis, Telemark University College, Faculty of Technology, Porsgrunn, Norway; 2008. 

  44. Chemical Engineering Progress Leva 88 65 1992 Reconsider packed-tower pressure-drop correlations 

  45. Industrial & Engineering Chemistry Research Kucka 41 5952 2002 10.1021/ie020452f Kinetics of the gas-liquid reaction between carbon dioxide and hydroxide ions 

  46. Chemical Engineering Progress Robbins 87 1991 Improved pressure drop prediction with a new correlation 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로