$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Application of nanofluids in heat exchangers: A review

Renewable & sustainable energy reviews, v.16 no.8, 2012년, pp.5625 - 5638  

Huminic, G. ,  Huminic, A.

Abstract AI-Helper 아이콘AI-Helper

The purpose of this review summarizes the important published articles on the enhancement of the convection heat transfer in heat exchangers using nanofluids on two topics. The first section focuses on presenting the theoretical and experimental results for the effective thermal conductivity, viscos...

주제어

참고문헌 (106)

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles, 1995; ASME FED 231:99-103. 

  2. International Journal of Heat and Mass Transfer Xuan 43 3701 2000 10.1016/S0017-9310(99)00369-5 Conceptions for heat transfer correlation of nanofluids 

  3. Experimental Heat Transfer Pak 11 15 1998 10.1080/08916159808946559 Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles 

  4. International Journal of Thermophysics Zhang 27 558 2006 10.1007/s10765-006-0054-1 Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluid 

  5. Experimental Thermal and Fluid Science Praveen 32 397 2007 10.1016/j.expthermflusci.2007.05.001 Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture 

  6. International Journal of Thermal Sciences Murshed 47 560 2008 10.1016/j.ijthermalsci.2007.05.004 Investigations of thermal conductivity and viscosity of nanofluids 

  7. International Journal of Thermal Sciences Nguyen 103 2008 10.1016/j.ijthermalsci.2007.01.033 Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable? 

  8. International Journal of Heat and Mass Transfer Lee 51 2651 2008 10.1016/j.ijheatmasstransfer.2007.10.026 Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles 

  9. Powder Technology Chen 194 132 2009 10.1016/j.powtec.2009.03.038 Rheological behaviour of nanofluids containing tube/rod-like nanoparticles 

  10. International Journal of Thermal Sciences Phuoc 48 1294 2009 10.1016/j.ijthermalsci.2008.11.015 Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3-deionized water nanofluids 

  11. International Journal of Heat and Mass Transfer Garg 52 5090 2009 10.1016/j.ijheatmasstransfer.2009.04.029 An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids 

  12. Particuology Chena 7 151 2009 10.1016/j.partic.2009.01.005 Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology 

  13. Experimental Thermal and Fluid Science Duangthongsuk 33 706 2009 10.1016/j.expthermflusci.2009.01.005 Measurement of temperature dependent thermal conductivity and viscosity of TiO2-water nanofluids 

  14. International Journal of Heat and Mass Transfer Lee 54 1-3 433 2011 10.1016/j.ijheatmasstransfer.2010.09.026 Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications 

  15. International Journal of Thermal Sciences Phuoc 50 12 2011 10.1016/j.ijthermalsci.2010.09.008 Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan 

  16. Maxwell 1881 Treatise on electricity and magnetism 

  17. Annalen der Physik, Leipzig Bruggeman 24 636 1935 10.1002/andp.19354160705 Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I-Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen 

  18. I&EC Fundamentals Hamilton 1 3 187 1962 10.1021/i160003a005 Thermal conductivity of heterogeneous twocomponent systems 

  19. Transactions on Techniques, Berlin Wasp 1977 Solid-liquid slurry pipeline transportation 

  20. International Journal of Thermophysics Davis 7 609 1986 10.1007/BF00502394 The effective thermal conductivity of a composite material with spherical inclusions 

  21. Journal of Applied Physics Lu 79 6761 1996 10.1063/1.361498 Effective conductivity of composites containing aligned spherical inclusions of finite conductivity 

  22. Journal Applied Physics Bhattacharya 95 11 6492 2004 10.1063/1.1736319 Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids 

  23. Journal of Nanoparticle Research Koo 6 6 577 2004 10.1007/s11051-004-3170-5 A new thermal conductivity model for nanofluids 

  24. International Journal of Heat and Mass Transfer Koo 48 13 2652 2005 10.1016/j.ijheatmasstransfer.2005.01.029 Laminar nanofluid flow in micro-heat sinks 

  25. Physical Review Letters Prasher 94 2 025901 2005 10.1103/PhysRevLett.94.025901 Thermal conductivity of nanoscale colloidal solutions (nanofluids) 

  26. Physica B: Condensed Matter Xue 368 1-4 302 2005 10.1016/j.physb.2005.07.024 Model for thermal conductivity of carbon nanotube-based composites 

  27. Journal of Applied Physics Li 99 8 084314 2006 10.1063/1.2191571 Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) 

  28. Journal of Heat Transfer Buongiorno 128 240 2006 10.1115/1.2150834 Convective transport in nanofluids 

  29. Physical Review Timofeeva 76 061203 2007 Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory 

  30. International Journal of Heat and Mass Transfer Avsec 50 19 4331 2007 10.1016/j.ijheatmasstransfer.2007.01.064 The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics 

  31. Journal of Nanoscience and Nanotechnology Chandrsekar 533 2009 10.1166/jnn.2009.J025 New analyatical models to investigate thermal conductivity of nanofluids 

  32. Experimental Thermal and Fluid Science Duangthongsuk 33 4 706 2009 10.1016/j.expthermflusci.2009.01.005 Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids 

  33. Journal of Nanoparticle Research Patel 12 1015 2010 10.1007/s11051-009-9658-2 An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids 

  34. Experimental Thermal and Fluid Science Chandrasekar 34 210 2010 10.1016/j.expthermflusci.2009.10.022 Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid 

  35. International Journal of Heat and Fluid Flow Vajjha 31 613 2010 10.1016/j.ijheatfluidflow.2010.02.016 Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator 

  36. Experimental Heat Transfer Raja 23 317 2010 10.1080/08916150903564796 S. Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid 

  37. International Journal of Heat and Fluid Flow Corcione 32 65 2011 10.1016/j.ijheatfluidflow.2010.08.004 Rayleigh-Benard convection heat transfer in nanoparticle suspensions 

  38. Annalen der Physik, Leipzig Einstein 19 289 1906 10.1002/andp.19063240204 Eine neue bestimmung der molekuldimensionen 

  39. Journal of the Physical Society of Japan Saito 5 4 1950 10.1143/JPSJ.5.4 Concentration dependence of the viscosity of high polymer solutions 

  40. Journal of Chemical Physics Brinkman 20 571 1952 10.1063/1.1700493 The viscosity of concentrated suspensions and solution 

  41. Journal of Fluid Mechanics Lundgren 51 273 1972 10.1017/S002211207200120X Slow flow through stationary random beds and suspensions of spheres 

  42. Journal of Fluid Mechanics Batchelor 83 1 97 1977 10.1017/S0022112077001062 The effect of Brownian motion on the bulk stress in a suspension of spherical particles 

  43. Drew 1999 Theory of multi component fluids 

  44. Journal of Thermophysics and Heat Transfer Wang 13 4 474 1999 10.2514/2.6486 Thermal conductivity of nanoparticles-fluid mixture 

  45. Material Science Engineering: A Tseng 355 186 2003 10.1016/S0921-5093(03)00063-7 Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions 

  46. International Journal of Heat and Fluid Flow Maiga 26 530 2005 10.1016/j.ijheatfluidflow.2005.02.004 Heat transfer enhancement by using nanofluids in forced convection flows 

  47. Journal of Colloid and Interface Science Song 287 114 2005 10.1016/j.jcis.2005.01.066 Study on hydration layers near nanoscale silica dispersed in aqueous solutions through viscosity measurement 

  48. International Communications in Heat and Mass Transfer Koo 32 9 1111 2005 10.1016/j.icheatmasstransfer.2005.05.014 Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids 

  49. Journal of Nanoscience and Nanotechnology Kulkarni 6 1150 2006 10.1166/jnn.2006.187 Temperature dependent rheological property of copper oxide nanoparticles suspension (Nanofluid) 

  50. Chemical Physics Letters Chen 444 333 2007 10.1016/j.cplett.2007.07.046 Rheological behavior of ethylene glycol based titania nanofluids 

  51. International Journal of Heat and Fluid Flow Nguyen 28 1492 2007 10.1016/j.ijheatfluidflow.2007.02.004 Temperature and particle-size dependent viscosity data for waterbased nanofluids-hysteresis phenomenon 

  52. Experimental Thermal and Fluid Science Namburu 32 67 2007 10.1016/j.expthermflusci.2007.05.001 Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture 

  53. Journal of Applied Physics Grag 103 074301 2008 10.1063/1.2902483 Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid 

  54. Journal of Physics D: Applied Physics Masoumi 42 055501 2009 10.1088/0022-3727/42/5/055501 A new model for calculating the effective viscosity of nanofluids 

  55. Experimental Heat Transfer Pak 11 151 1998 10.1080/08916159808946559 Hydrodynamic and heat transfer study of dispersed fluids with sub-micron metallic oxide particles 

  56. Science China, Series E: Technology Science Li 45 4 408 2002 10.1007/s11431-006-2001-6 Convective heat transfer and flow characteristics of Cu-water nanofluid 

  57. Journal of Heat Transfer Xuan 125 1 151 2003 10.1115/1.1532008 Investigation of convective heat transfer and flow features of nanofluids 

  58. International Journal of Heat and Mass Transfer Yang 48 6 1107 2005 10.1016/j.ijheatmasstransfer.2004.09.038 Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow 

  59. International Journal of Numerical Methods for Heat and Fluid Flow Maiga 16 3 275 2006 10.1108/09615530610649717 Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension 

  60. International Journal of Heat and Mass Transfer Duangthongsuk 53 334 2010 10.1016/j.ijheatmasstransfer.2009.09.024 An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime 

  61. International Journal of Heat and Mass Transfer Vajjha 53 4607 2010 10.1016/j.ijheatmasstransfer.2010.06.032 Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids 

  62. International Communications in Heat and Mass Transfer Sajadi 38 1474 2011 10.1016/j.icheatmasstransfer.2011.07.007 Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube 

  63. Particuology Godson Asirvatham 9 626 2011 10.1016/j.partic.2011.03.014 Convective heat transfer of nanofluids with correlations 

  64. International Journal of Thermal Sciences Mansour 50 3 403 2011 10.1016/j.ijthermalsci.2010.03.016 Experimental study of mixed convection with water-Al2O3 nanofluid in inclined tube with uniform wall heat flux 

  65. International Journal of Heat and Mass Transfer Ding 49 240 2006 10.1016/j.ijheatmasstransfer.2005.07.009 Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) 

  66. International Journal of Heat and Mass Transfer Heris 33 529 2006 10.1016/j.icheatmasstransfer.2006.01.005 Experimental investigation of oxide nanofluids laminar flow convective heat transfer 

  67. International Journal of Heat and Fluid Flow Heris 28 203 2007 10.1016/j.ijheatfluidflow.2006.05.001 Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube 

  68. International Journal of Heat and Mass Transfer Lee 50 452 2007 10.1016/j.ijheatmasstransfer.2006.08.001 Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels 

  69. Advanced Powder Technology Ding 18 813 2007 10.1163/156855207782515021 Forced convective heat transfer of nanofluids 

  70. International Journal of Heat and Mass Transfer Hwang 52 193 2009 10.1016/j.ijheatmasstransfer.2008.06.032 Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime 

  71. International Journal of Heat and Mass Transfer Anoop 52 2189 2009 10.1016/j.ijheatmasstransfer.2007.11.063 Effect of particle size on the convective heat transfer in nanofluid in the developing region 

  72. International Journal of Thermal Sciences Gherasim 48 1486 2009 10.1016/j.ijthermalsci.2009.01.008 Experimental investigation of nanofluids in confined laminar radial flows 

  73. Current Applied Physics Kim 9 119 2009 10.1016/j.cap.2008.12.047 Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions 

  74. International Journal of Heat and Mass Transfer Jung 52 466 2009 10.1016/j.ijheatmasstransfer.2008.03.033 Forced convective heat transfer of nanofluids in microchannels 

  75. International Communications in Heat and Mass Transfer Sharma 36 503 2009 10.1016/j.icheatmasstransfer.2009.02.011 Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert 

  76. International Journal of Heat and Mass Transfer Duangthongsuk 52 2059 2009 10.1016/j.ijheatmasstransfer.2008.10.023 Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger 

  77. International Journal of Heat and Mass Transfer Yu 52 3606 2009 10.1016/j.ijheatmasstransfer.2009.02.036 Heat transfer to a silicon carbide/water nanofluid 

  78. Renewable and Sustainable Energy Reviews Raja 14 629 2010 10.1016/j.rser.2009.10.004 S. Enhancement of heat transfer using nanofluids-An overview 

  79. Journal of Thermal Science Wang 46 1 2006 10.1016/j.ijthermalsci.2006.06.010 Heat transfer characteristics of nanofluids: a review 

  80. Renewable Sustainable Energy Reviews Duangthongsuk 11 797 2007 10.1016/j.rser.2005.06.005 A critical review of convective heat transfer of nanofluids 

  81. International Journal of Heat and Mass Transfer Kakac 52 3187 2009 10.1016/j.ijheatmasstransfer.2009.02.006 Review of convective heat transfer enhancement with nanofluids 

  82. Particuology Wen 7 141 2009 10.1016/j.partic.2009.01.007 Review of nanofluids for heat transfer applications 

  83. Renewable and Sustainable Energy Reviews Mohammed 15 1502 2011 10.1016/j.rser.2010.11.031 Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review 

  84. Renewable and Sustainable Energy Reviews Sarkar 15 3271 2011 10.1016/j.rser.2011.04.025 A critical review on convective heat transfer correlations of nanofluids 

  85. Renewable and Sustainable Energy Reviews Murshed 15 2342 2011 10.1016/j.rser.2011.02.016 A review of boiling and convective heat transfer with nanofluids 

  86. Renewable and Sustainable Energy Reviews Saidur 15 1646 2011 10.1016/j.rser.2010.11.035 A review on applications and challenges of nanofluids 

  87. International Journal of Heat and Mass Transfer Vajjha 55 4063 2012 10.1016/j.ijheatmasstransfer.2012.03.048 A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power 

  88. International Journal of Heat and Fluid Flow Pantzalia 30 691 2009 10.1016/j.ijheatfluidflow.2009.02.005 Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface 

  89. Chemical Engineering Science Pantzali 64 14 3290 2009 10.1016/j.ces.2009.04.004 Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE) 

  90. Experimental Thermal and Fluid Science Mare 35 8 1535 2011 10.1016/j.expthermflusci.2011.07.004 Comparison of the thermal performances of two nanofluids at low temperature in a plate heat exchanger 

  91. Journal of Nanoscience and Nanotechnology Kwon 11 7 5769 2011 10.1166/jnn.2011.4399 Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger 

  92. Experimental Thermal and Fluid Science Pandey 38 248 2012 10.1016/j.expthermflusci.2011.12.013 Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger 

  93. Journal of Apllied Sciences Khoddamrezaee 10 6 500 2010 10.3923/jas.2010.500.505 Simulation of (EG+Al2O3) nanofluid through the shell and tube heat exchanger with rectangular arrangement of tubes and constant heat flux 

  94. International Journal of Heat and Mass Transfer Farajollahi 53 1-3 12 2011 Heat transfer of nanofluids in a shell and tube heat exchanger 

  95. International Journal of Heat and Mass Transfer Lotfi 39 1 108 2012 10.1016/j.icheatmasstransfer.2011.10.002 Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger 

  96. International Journal of Heat and Mass Transfer Leong 55 4 808 2012 10.1016/j.ijheatmasstransfer.2011.10.027 Modeling of shell and tube heat recovery exchanger operated with nanofluid based coolants 

  97. International Journal of Nanomanufacturing Vasu 2 3 271 2008 10.1504/IJNM.2008.018949 Thermal design analysis of compact heat exchanger using nanofluids 

  98. Applied Thermal Engineering Leong 30 2685 2010 10.1016/j.applthermaleng.2010.07.019 Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator) 

  99. Applied Thermal Engineering Peyghambarzadeh 31 1833 2011 10.1016/j.applthermaleng.2011.02.029 Improving the cooling performance of automobile radiator with Al2O3/water nanofluid 

  100. International Communications in Heat and Mass Transfer Peyghambarzadeh 38 9 1283 2011 10.1016/j.icheatmasstransfer.2011.07.001 Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators 

  101. International Communications in Heat and Mass Transfer Razi 38 964 2011 10.1016/j.icheatmasstransfer.2011.04.010 Pressure drop and thermal characteristics of CuO-base oil nanofluid laminar flow in flattened tubes under constant heat flux 

  102. 10.4271/2012-01-1045 Huminic G, Huminic A. The cooling performances evaluation of nanofluids in a compact heat exchanger. In: SAE technical paper 2012-01-1045, 2012; doi:10.4271/2012-01-1045. 

  103. Korean Journal of Chemical Engineering Chun 25 5 966 2008 10.1007/s11814-008-0156-5 Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system 

  104. International Communications in Heat and Mass Transfer Demir 38 2 218 2011 10.1016/j.icheatmasstransfer.2010.12.009 Numerical investigation on the single phase forced convection heat transfer characteristics of TiO2 nanofluids in a double-tube counter flow heat exchanger 

  105. Experimental Thermal and Fluid Science Zamzamian 35 3 495 2011 10.1016/j.expthermflusci.2010.11.013 Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow 

  106. International Journal of Heat and Mass Transfer Huminic 54 19-20 4280 2011 10.1016/j.ijheatmasstransfer.2011.05.017 Heat transfer characteristics in double tube helical heat exchangers using nanofluids 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로