$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A beta‐complex statistical four body contact potential combined with a hydrogen bond statistical potential recognizes the correct native structure from protein decoy sets

Proteins, v.81 no.8, 2013년, pp.1420 - 1433  

Sánchez‐González, Gilberto (Facultad de Ciencias, Universidad Autó) ,  Kim, Jae‐Kwan (noma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, 62209, Mé) ,  Kim, Deok‐Soo (xico) ,  Garduño‐Juárez, Ramón (Voronoi Diagram Research Center, Department of Industrial Engineering, Hanyang University, Seoul, Korea)

Abstract

ABSTRACTWe present a new four‐body knowledge‐based potential for recognizing the native state of proteins from their misfolded states. This potential was extracted from a large set of protein structures determined by X‐ray crystallography using BetaMol, a software based on the recent theory of the beta‐complex (β‐complex) and quasi‐triangulation of the Voronoi diagram of spheres. This geometric construct reflects the size difference among atoms in their full Euclidean metric; property not accounted for in a typical 3D Delaunay triangulation. The ability of this potential to identify the native conformation over a large set of decoys was evaluated. Experiments show that this potential outperforms a potential constructed with a classical Delaunay triangulation in decoy discrimination tests. The addition of a statistical hydrogen bond potential to our four‐body potential allows a significant improvement in the decoy discrimination, in such a way that we are able to predict successfully the native structure in 90% of cases. Proteins 2013; 81:1420–1433. © 2013 Wiley Periodicals, Inc.

주제어

참고문헌 (61)

  1. Thomas PD , Dill KA . Statistical Potentials extracted from protein structures: how accurate are they? J Mol Biol 1966 ; 257 : 457 – 469 . 

  2. Tozzini V . Coarse‐grained models for proteins . Curr Opin Struct Biol 2005 ; 15 : 144 – 150 . 

  3. Miyazawa S , Jernigan RL . Estimation of effective interresidue contact energies from protein crystal structures: quasi‐chemical approximation . Macromolecules 1985 ; 18 : 534 – 552 . 

  4. Sippl MJ . Boltzmann's principle, knowledge‐based mean fields and protein folding: an approach to the computational determination of protein structures . J Comput Aided Mol Des 1993 ; 7 : 473 – 501 . 

  5. Sippl MJ , Ortner M , Jaritz M , Lackner P , Flockner H . Helmholtz free energies of atom pair interactions in proteins . Fold Des 1996 ; 1 : 289 – 298 . 

  6. Skolnick J , Jaroszewski L , Kolinski A , Godzik A . Derivation and testing of pair potentials for protein folding . When is the quasichemical approximation correct? Protein Sci 1997 ; 6 : 676 – 688 . 

  7. Betancourt MR , Thirumalai D . Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes . Protein Sci 1999 ; 8 : 361 – 369 . 

  8. Solis AD , Rackovsky SR . Information‐theoretic analysis of the reference state in contact potentials used for protein structure prediction . Proteins 2010 ; 78 : 1382 – 1397 . 

  9. Miyazawa S , Jernigan RL . Residue‐residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading . J Mol Biol 1996 ; 256 : 623 – 644 . 

  10. Sippl MJ . Calculation of conformational ensembles from potentials of mean force: an approach to the knowledge‐based prediction of local structures in globular proteins . J Mol Biol 1990 ; 213 : 859 – 883 . 

  11. Mukherjee A , Bhimalapuram P , Bagchia B . Orientation‐dependent potential of mean force for protein folding . J Chem Phys 2005 ; 123 : 14901 – 14911 . 

  12. Bahar I , Jernigan RL . Inter‐residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation . J Mol Biol 1997 ; 266 : 195 – 214 . 

  13. Miyazawa S , Jernigan RL . How effective for fold recognition is a potential of mean force that includes relative orientations between contacting residues in proteins? J Chem Phys 2005 ; 122 : 024901 . 

  14. Richards FM . The interpretation of protein structures: total volume, group volume distributions and packing density . J Mol Biol 1974 ; 82 : 1 – 14 . 

  15. Basener W . Topology and its applications , 1st ed. New Jersey : Wiley‐Interscience ; 2006 . 

  16. Kim D‐S , Cho Y , Sugihara K , Ryu J , Kim D . Three‐dimensional beta‐shapes and beta‐complexes via quasi‐triangulation . Comput Aided Des 2010 ; 42 : 911 – 929 . 

  17. Kim D‐S , Cho Y , Sugihara K . Quasi‐worlds and quasi‐operators on quasi‐triangulations . Comput Aided Des 2010 ; 42 : 874 – 888 . 

  18. Voronoi G . Nouvelles applications des paramètres continus à la théorie des formes quadratiques . J für die Reine Angew Math 1907 ; 133 : 97 – 178 . 

  19. Aurenhammer F . Voronoi diagrams—a survey of a fundamental geometric data structure . ACM Comput Surv 1991 ; 23 : 345 – 405 . 

  20. Okabe A , Boots B , Sugihara K , Chiu SN . Spatial tessellations: concepts and applications of voronoi diagrams . West Sussex : John Wiley & Sons Ltd .; 2000 . 

  21. Delaunay B . Sur la sphère vide . Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 1934 ; 7 : 793 – 800 . 

  22. Singh RK , Tropsha A , Vaisman II . Delaunay tessellation of proteins: four body nearest neighbor propensities of amino acid residues . J Comput Biol 1996 ; 3 : 213 – 222 . 

  23. Zheng W , Cho SJ , Vaisman II , Tropsha A . A new approach to protein folds recognition based on Delaunay tessellation of protein structure . Pacific Symp Biocomput 1997 ; 1997 : 486 – 497 . 

  24. Taylor T , Vaisman II . Graph theoretic properties of networks formed by the Delaunay tessellation of protein structures . Phys Rev E Stat Nonlin Soft Matter Phys 2006 ; 73 : 041925 . 

  25. Feng Y , Kloczkowski A , Jernigan RL . Four‐body contact potentials derived from two protein datasets to discriminate native structures from decoys . Proteins 2007 ; 68 : 57 – 66 . 

  26. Gan HH , Tropsha A , Schlick T . Lattice protein folding with two and four‐body statistical potentials . Proteins 2001 ; 43 : 161 – 174 . 

  27. Reck GM , Vaisman II . Decoy discrimination using contact potentials based on delaunay tessellation of hydrated proteins. In: Proceedings of the Fourth International Symposium on Voronoi Diagrams in Science and Engineering, Wales, UK , 2007 . pp 159 – 167 . 

  28. Poupon A . Voronoi and Voronoi‐related tessellations in studies of protein structure and interaction . Curr Opin Struct Biol 2004 ; 14 : 233 – 241 . 

  29. Carter CW , LeFebvre BC , Cammer SA , Tropsha A , Edgell MA . Four‐body potentials reveal protein‐specific correlations to stability changes caused by hydrophobic core mutations . J Mol Biol 2001 ; 311 : 625 – 638 . 

  30. Deutsch C , Krishnamoorthy B . Four‐Body scoring function for mutagenesis . Bioinformatics 2007 ; 23 : 3009 – 3015 . 

  31. Sun W , He J . From isotropic to anisotropic side chain representations: comparison of three models for residue contact estimation . PLoS ONE 2011 ; 6 : e19238 . Doi:10.1371/journal.pone.0019238. 

  32. Munson PJ , Singh RK . Statistical significance of hierarchical multi‐body potentials based on Delaunay tessellation and their application in sequence‐structure alignment . Protein Sci 1997 ; 6 : 1467 – 1481 . 

  33. Kim D‐S , Seo J , Kim D , Ryu J , Cho C‐H . Three‐dimensional beta shapes . Comput Aided Des 2006 ; 38 : 1179 – 1191 . 

  34. Ryu J , Park R , Kim D‐S . Molecular surfaces on proteins via beta shapes . Comput Aided Des 2007 ; 39 : 1042 – 1057 . 

  35. Kim D , Kim D‐S . Region‐expansion for the Voronoi diagram of 3D spheres . Comput Aided Des 2006 ; 38 : 417 – 430 . 

  36. Edelsbrunner H , Mücke EP . Three‐dimensional alpha shape . ACM Trans Graphics 1994 ; 13 : 43 – 72 . 

  37. Winter P , Sterner H , Sterner P . Alpha shapes and proteins . In: Sixth International Symposium on Voronoi Diagrams , Copenhagen, Denmark , 2009 . pp 217 – 224 . 

  38. Edelsbrunner H . Smooth surfaces for multi‐scale shape representation. In: Proceedings of the 15th Conference on Foundation of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science, London, UK , 1995 . pp 391 –412. 

  39. Kim D‐S , Cho Y , Kim D . Edge‐tracing algorithm for Euclidean Voronoi diagram of 3D spheres. In: Proceedings of the 16th Canadian Conference on Computational Geometry, Quebec, Canada ,; 2004 . pp 176 –179. 

  40. Kim D‐S , Kim D , Cho Y , Sugihara K . Quasi‐triangulation and interworld data structure in three dimensions . Comput Aided Des 2006 ; 38 : 808 – 819 . 

  41. Myers JK , Pace CN . Hydrogen bonding stabilizes globular proteins . Biophys J 1996 ; 71 : 2033 – 2039 . 

  42. Flinders KT , Flynn PF , Yu YB . The effect of a side chain‐backbone swap on protein stability . J Pept Res 2004 ; 63 : 17 – 22 . 

  43. Wang M , Wales TE , Fitzgerald MC . Conserved thermodynamic contributions of backbone hydrogen bonds in a protein fold . Proc Natl Acad Sci USA 2006 ; 103 : 2600 – 2604 . 

  44. Deechongkit S , Dawson PE , Kelly JW . Toward assessing the position‐dependent contributions of backbone hydrogen bonding to beta‐sheet folding thermodynamics employing amide‐to‐ester perturbations . J Am Chem Soc 2004 ; 126 : 16762 – 16771 . 

  45. Deechongkit S , Nguyen H , Powers ET , Dawson PE , Gruebele M , Kelly JW . Context‐dependent contributions of backbone hydrogen bonding to beta‐sheet folding energetic . Nature 2004 ; 430 : 101 – 105 . 

  46. Cho Y , Kim J‐K , Won C‐I , Ryu J , Kim C‐M , Kim D‐S . BetaMol: a molecular modeling, analysis and visualization software based on the beta‐complex and the quasi‐triangulation . J Adv Mech Des Syst Manuf 2012 ; 6 : 389 – 403 . 

  47. Samudrala R , Levitt M . Decoys 'R' Us: a database of incorrect protein conformations to improve protein structure prediction . Protein Sci 2000 ; 9 : 1399 – 1401 . 

  48. Bondi A . van der Waals Volumens and Radii . J Phys Chem 1964 ; 68 : 441 – 451 . 

  49. Krishnamoorthy B , Tropsha A . Development of a four‐body statistical pseudo‐potential to discriminate native from non‐native protein conformations . Bioinformatics 2003 ; 19 : 1540 – 1548 

  50. Torshin IY , Weber IT , Harrison RW . Geometric criteria of hydrogen bonds in proteins and identification of ‘bifurcated’ hydrogen bonds . Protein Eng 2002 ; 15 : 359 – 363 . 

  51. Stickle DF , Presta LG , Dill KA , Rose GD . Hydrogen bonding in globular proteins . J Mol Biol 1992 ; 226 : 1143 – 1159 . 

  52. Myers JK , Pace CN . Hydrogen bonding stabilizes globular proteins . Biophys J 1996 ; 71 : 2033 – 2039 . 

  53. Scott JN , Vanderkooi JM . A new hydrogen bond angle/distance potential energy surface of the quantum water dimer . Water 2010 ; 2 : 14 – 28 . 

  54. Fabiola F , Bertram R , Korostelev A , Chapman MS . An improved hydrogen bond potential: impact on medium resolution protein structures . Protein Sci. 2002 ; 11 : 1415 – 1423 . 

  55. Park B , Levitt M . Energy functions that discriminate X‐ray and near native folds from well‐constructed decoys . J Mol Biol 1996 ; 258 : 367 – 392 . 

  56. Xia Y , Huang ES , Levitt M , Samudrala R . Ab initio construction of protein tertiary structures using a hierarchical approach . J Mol Biol 2000 ; 300 : 171 – 185 . 

  57. Levitt M , Hirshberg M , Sharon R , Daggett V . Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution . Comput Phys Commun 1995 ; 91 : 215 – 231 . 

  58. Keasar C , Levitt M . A novel approach to decoy set generation: designing a physical energy function having local minima with native structure characteristics . J Mol Biol 2003 ; 329 : 159 – 174 . 

  59. Jung J , Moon H‐T , Lee J . Identification of the protein native structure by using a sequence‐dependent feature in contact maps . J Korean Phys Soc 2005 ; 46 : 625 – 630 . 

  60. Shen M‐Y , Sali A . Statistical potential for assessment and prediction of protein structures . Protein Sci 2006 ; 15 : 2507 – 2524 . 

  61. Jie L . Extraction of an effective pairwise potential for amino acids. M.Sc. Thesis. Graduate Theses and Dissertations. Paper 10099 . 2011 . Iowa State University, Chemistry Department, Available at: http://lib.dr.iastate.edu/etd/10099. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로