$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Stem cell therapy and cellular engineering for treatment of neuronal dysfunction in Huntington's disease

Biotechnology journal, v.9 no.7, 2014년, pp.882 - 894  

Choi, Kyung‐Ah ,  Hwang, Insik ,  Park, Hang‐soo ,  Oh, Seung‐Ick ,  Kang, Seongman ,  Hong, Sunghoi

Abstract AI-Helper 아이콘AI-Helper

AbstractHuntington's disease (HD) is a fatal inherited neurodegenerative disorder characterized by progressive loss of neurons in the striatum, a sub‐cortical region of the forebrain. The sub‐cortical region of the forebrain is associated with the control of movement and behavior, thus...

참고문헌 (122)

  1. Flier, Jeffrey S., Underhill, Lisa H., Martin, Joseph B., Gusella, James F.. Huntingtons Disease. The New England journal of medicine, vol.315, no.20, 1267-1276.

  2. Bates, Gillian P.. History of Genetic Disease: The molecular genetics of Huntington disease — a history. Nature reviews. Genetics, vol.6, no.10, 766-773.

  3. J. Psychiatry Neurosci. Montoya A. 21 31 2006 Brain imaging and cognitive dysfunctions in Huntington's disease. 

  4. VONSATTEL, JEAN-PAUL, MYERS, RICHARD H., STEVENS, THOMAS J., FERRANTE, ROBERT J., BIRD, EDWARD D., RICHARDSON Jr., EDWARD P.. Neuropathological Classification of Huntingtonʼs Disease. Journal of neuropathology and experimental neurology, vol.44, no.6, 559-577.

  5. Bates, Gillian. Huntingtin aggregation and toxicity in Huntington's disease. The Lancet, vol.361, no.9369, 1642-1644.

  6. Zabel, Claus, Chamrad, Daniel C., Priller, Josef, Woodman, Ben, Meyer, Helmut E., Bates, Gillian P., Klose, Joachim. Alterations in the Mouse and Human Proteome Caused by Huntington's Disease. Molecular & cellular proteomics : MCP, vol.1, no.5, 366-375.

  7. Foroud, T., Gray, J., Ivashina, J., Conneally, P M.. Differences in duration of Huntington's disease based on age at onset. Journal of neurology, neurosurgery, and psychiatry, vol.66, no.1, 52-56.

  8. Gusella, James F., Wexler, Nancy S., Conneally, P. Michael, Naylor, Susan L., Anderson, Mary Anne, Tanzi, Rudolph E., Watkins, Paul C., Ottina, Kathleen, Wallace, Margaret R., Sakaguchi, Alan Y., Young, Anne B., Shoulson, Ira, Bonilla, Ernesto, Martin, Joseph B.. A polymorphic DNA marker genetically linked to Huntington's disease. Nature, vol.306, no.5940, 234-238.

  9. 10.1016/0092-8674(93)90585-E The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes.Cell1993 72 971-983. 

  10. DiFiglia, Marian, Sapp, Ellen, Chase, Kathryn O., Davies, Stephen W., Bates, Gillian P., Vonsattel, J. P., Aronin, Neil. Aggregation of Huntingtin in Neuronal Intranuclear Inclusions and Dystrophic Neurites in Brain. Science, vol.277, no.5334, 1990-1993.

  11. 10.1176/ajp.154.8.1046 

  12. Vashishtha, Malini, Ng, Christopher W., Yildirim, Ferah, Gipson, Theresa A., Kratter, Ian H., Bodai, Laszlo, Song, Wan, Lau, Alice, Labadorf, Adam, Vogel-Ciernia, Annie, Troncosco, Juan, Ross, Christopher A., Bates, Gillian P., Krainc, Dimitri, Sadri-Vakili, Ghazaleh, Finkbeiner, Steven, Marsh, J. Lawrence, Housman, David E., Fraenkel, Ernest, Thompson, Leslie M.. Targeting H3K4 trimethylation in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, vol.110, no.32, E3027-E3036.

  13. Mali, Prashant, Cheng, Linzhao. Concise Review: Human Cell Engineering: Cellular Reprogramming and Genome Editing. Stem cells®, vol.30, no.1, 75-81.

  14. McBride, Jodi L., Behrstock, Soshana P., Chen, Er-Yun, Jakel, Rebekah J., Siegel, Irwin, Svendsen, Clive N., Kordower, Jeffrey H.. Human neural stem cell transplants improve motor function in a rat model of Huntington's disease. Journal of comparative neurology, vol.475, no.2, 211-219.

  15. Ryu, Jae K, Kim, Jean, Cho, Sung J, Hatori, Kozo, Nagai, Astushi, Choi, Hyun B, Lee, Min C, McLarnon, James G, Kim, Seung U. Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Neurobiology of disease, vol.16, no.1, 68-77.

  16. Takahashi, Kazutoshi, Yamanaka, Shinya. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, vol.126, no.4, 663-676.

  17. Takahashi, Kazutoshi, Tanabe, Koji, Ohnuki, Mari, Narita, Megumi, Ichisaka, Tomoko, Tomoda, Kiichiro, Yamanaka, Shinya. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, vol.131, no.5, 861-872.

  18. Vierbuchen, Thomas, Ostermeier, Austin, Pang, Zhiping P., Kokubu, Yuko, Südhof, Thomas C., Wernig, Marius. Direct conversion of fibroblasts to functional neurons by defined factors. Nature, vol.463, no.7284, 1035-1041.

  19. Pang, Zhiping P., Yang, Nan, Vierbuchen, Thomas, Ostermeier, Austin, Fuentes, Daniel R., Yang, Troy Q., Citri, Ami, Sebastiano, Vittorio, Marro, Samuele, Südhof, Thomas C., Wernig, Marius. Induction of human neuronal cells by defined transcription factors. Nature, vol.476, no.7359, 220-223.

  20. Han, D., Tapia, N., Hermann, A., Hemmer, K., Hoing, S., Arauzo-Bravo, Marcos J., Zaehres, H., Wu, G., Frank, S., Moritz, S., Greber, B., Yang, J., Lee, H., Schwamborn, Jens C., Storch, A., Scholer, Hans R.. Direct Reprogramming of Fibroblasts into Neural Stem Cells by Defined Factors. Cell stem cell, vol.10, no.4, 465-472.

  21. Park, In-Hyun, Arora, Natasha, Huo, Hongguang, Maherali, Nimet, Ahfeldt, Tim, Shimamura, Akiko, Lensch, M. William, Cowan, Chad, Hochedlinger, Konrad, Daley, George Q.. Disease-Specific Induced Pluripotent Stem Cells. Cell, vol.134, no.5, 877-886.

  22. Lindvall, Olle, Kokaia, Zaal, Martinez-Serrano, Alberto. Stem cell therapy for human neurodegenerative disorders–how to make it work. Nature medicine, vol.10, no.7, S42-S50.

  23. Walker, F. O.. Huntington's Disease. Seminars in neurology, vol.27, no.2, 143-150.

  24. Davies, Stephen W, Turmaine, Mark, Cozens, Barbara A, DiFiglia, Marian, Sharp, Alan H, Ross, Christopher A, Scherzinger, Eberhard, Wanker, Erich E, Mangiarini, Laura, Bates, Gillian P. Formation of Neuronal Intranuclear Inclusions Underlies the Neurological Dysfunction in Mice Transgenic for the HD Mutation. Cell, vol.90, no.3, 537-548.

  25. Bence, Neil F., Sampat, Roopal M., Kopito, Ron R.. Impairment of the Ubiquitin-Proteasome System by Protein Aggregation. Science, vol.292, no.5521, 1552-1555.

  26. Waelter, Stephanie, Boeddrich, Annett, Lurz, Rudi, Scherzinger, Eberhard, Lueder, Gerhild, Lehrach, Hans, Wanker, Erich E., Walter, Peter. Accumulation of Mutant Huntingtin Fragments in Aggresome-like Inclusion Bodies as a Result of Insufficient Protein Degradation. Molecular biology of the cell, vol.12, no.5, 1393-1407.

  27. Johnston, Jennifer A., Ward, Cristina L., Kopito, Ron R.. Aggresomes: A Cellular Response to Misfolded Proteins. The Journal of cell biology, vol.143, no.7, 1883-1898.

  28. Venkatraman, Prasanna, Wetzel, Ronald, Tanaka, Motomasa, Nukina, Nobuyuki, Goldberg, Alfred L. Eukaryotic Proteasomes Cannot Digest Polyglutamine Sequences and Release Them during Degradation of Polyglutamine-Containing Proteins. Molecular cell, vol.14, no.1, 95-104.

  29. Ventruti, Annamaria, Cuervo, Ana Maria. Autophagy and neurodegeneration. Current neurology and neuroscience reports, vol.7, no.5, 443-451.

  30. Kremer, Berry, Goldberg, Paul, Andrew, Susan E., Theilmann, Jane, Telenius, Hakan, Zeisler, Jutta, Squitieri, Ferdinando, Lin, Biaoyang, Bassett, Ann, Almqvist, Elizabeth, Bird, Thomas D., Hayden, Michael R.. A Worldwide Study of the Huntington's Disease Mutation: The Sensitivity and Specificity of Measuring CAG Repeats. The New England journal of medicine, vol.330, no.20, 1401-1406.

  31. Snell, Russell G., MacMillan, John C., Cheadle, Jeremy P., Fenton, Iain, Lazarou, Lazarus P., Davies, Peter, MacDonald, Marcy E., Gusella, James F., Harper, Peter S., Shaw, Duncan J.. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nature genetics, vol.4, no.4, 393-397.

  32. Fusco, Francesca R., Chen, Quan, Lamoreaux, William J., Figueredo-Cardenas, Griselle, Jiao, Yun, Coffman, Jonathan A., Surmeier, D. James, Honig, Marcia G., Carlock, Leon R., Reiner, Anton. Cellular Localization of Huntingtin in Striatal and Cortical Neurons in Rats: Lack of Correlation with Neuronal Vulnerability in Huntington’s Disease. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.19, no.4, 1189-1202.

  33. DiFiglia, Marian, Sapp, Ellen, Chase, Kathryn, Schwarz, Cordula, Meloni, Alison, Young, Christine, Martin, Eileen, Vonsattel, Jean-Paul, Carraway, Robert, Reeves, Steven A, Boyce, Frederick M, Aronin, Neil. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron, vol.14, no.5, 1075-1081.

  34. Trottier, Yvon, Devys, Didier, Imbert, Georges, Saudou, Frédéric, An, Isabelle, Lutz, Yves, Weber, Chantal, Agid, Yves, Hirsch, Etienne C., Mandel, Jean-Louis. Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nature genetics, vol.10, no.1, 104-110.

  35. Steffan, Joan S., Kazantsev, Aleksey, Spasic-Boskovic, Olivera, Greenwald, Marilee, Zhu, Ya-Zhen, Gohler, Heike, Wanker, Erich E., Bates, Gillian P., Housman, David E., Thompson, Leslie M.. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proceedings of the National Academy of Sciences of the United States of America, vol.97, no.12, 6763-6768.

  36. Li, Shi-Hua, Cheng, Anna L., Zhou, Hui, Lam, Suzanne, Rao, Manjula, Li, He, Li, Xiao-Jiang. Interaction of Huntington Disease Protein with Transcriptional Activator Sp1. Molecular and cellular biology, vol.22, no.5, 1277-1287.

  37. Gauthier, Laurent R, Charrin, Bénédicte C, Borrell-Pagès, Maria, Dompierre, Jim P, Rangone, Hélène, Cordelières, Fabrice P, De Mey, Jan, MacDonald, Marcy E, Leßmann, Volkmar, Humbert, Sandrine, Saudou, Frédéric. Huntingtin Controls Neurotrophic Support and Survival of Neurons by Enhancing BDNF Vesicular Transport along Microtubules. Cell, vol.118, no.1, 127-138.

  38. Gunawardena, Shermali, Goldstein, Lawrence S B. Polyglutamine diseases and transport problems: deadly traffic jams on neuronal highways.. Archives of neurology, vol.62, no.1, 46-51.

  39. Bao, J, Sharp, A H, Wagster, M V, Becher, M, Schilling, G, Ross, C A, Dawson, V L, Dawson, T M. Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin.. Proceedings of the National Academy of Sciences of the United States of America, vol.93, no.10, 5037-5042.

  40. Holbert, Sébastien, Dedeoglu, Alpaslan, Humbert, Sandrine, Saudou, Frédéric, Ferrante, Robert J., Néri, Christian. Cdc42-interacting protein 4 binds to huntingtin: Neuropathologic and biological evidence for a role in Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, vol.100, no.5, 2712-2717.

  41. Harjes, Phoebe, Wanker, Erich E. The hunt for huntingtin function: interaction partners tell many different stories. Trends in biochemical sciences, vol.28, no.8, 425-433.

  42. Li, Shi-Hua, Li, Xiao-Jiang. Huntingtin–protein interactions and the pathogenesis of Huntington's disease. Trends in genetics, vol.20, no.3, 146-154.

  43. Cattaneo, Elena, Rigamonti, Dorotea, Goffredo, Donato, Zuccato, Chiara, Squitieri, Ferdinando, Sipione, Simonetta. Loss of normal huntingtin function: new developments in Huntington's disease research. Trends in neurosciences, vol.24, no.3, 182-188.

  44. Zhang, Yu, Li, Mingwei, Drozda, Martin, Chen, Minghua, Ren, Shengjun, Mejia Sanchez, Rene O., Leavitt, Blair R., Cattaneo, Elena, Ferrante, Robert J., Hayden, Michael R., Friedlander, Robert M.. Depletion of wild-type huntingtin in mouse models of neurologic diseases. Journal of neurochemistry, vol.87, no.1, 101-106.

  45. Leavitt, Blair R., van Raamsdonk, Jeremy M., Shehadeh, Jacqueline, Fernandes, Herman, Murphy, Zoe, Graham, Rona K., Wellington, Cheryl L., Lynn A. Raymond,, Hayden, Michael R.. Wild‐type huntingtin protects neurons from excitotoxicity. Journal of neurochemistry, vol.96, no.4, 1121-1129.

  46. Gervais, François G., Singaraja, Roshni, Xanthoudakis, Steven, Gutekunst, Claire-Anne, Leavitt, Blair R., Metzler, Martina, Hackam, Abigail S., Tam, John, Vaillancourt, John P., Houtzager, Vicky, Rasper, Dita M., Roy, Sophie, Hayden, Michael R., Nicholson, Donald W.. Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nature cell biology, vol.4, no.2, 95-105.

  47. Li, Shi-Hua, Gutekunst, Claire-Anne, Hersch, Steven M., Li, Xiao-Jiang. Interaction of Huntingtin-Associated Protein with Dynactin P150Glued. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.18, no.4, 1261-1269.

  48. Bezprozvanny, Ilya, Hayden, Michael R.. Deranged neuronal calcium signaling and Huntington disease. Biochemical and biophysical research communications, vol.322, no.4, 1310-1317.

  49. Benchoua, Alexandra, Trioulier, Yaël, Zala, Diana, Gaillard, Marie-Claude, Lefort, Nathalie, Dufour, Noelle, Saudou, Frederic, Elalouf, Jean-Marc, Hirsch, Etienne, Hantraye, Philippe, Déglon, Nicole, Brouillet, Emmanuel. Involvement of Mitochondrial Complex II Defects in Neuronal Death Produced by N-Terminus Fragment of Mutated Huntingtin. Molecular biology of the cell, vol.17, no.4, 1652-1663.

  50. Panov, Alexander V., Gutekunst, Claire-Anne, Leavitt, Blair R., Hayden, Michael R., Burke, James R., Strittmatter, Warren J., Greenamyre, J. Timothy. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nature neuroscience, vol.5, no.8, 731-736.

  51. Tang, Tie-Shan, Slow, Elizabeth, Lupu, Vitalie, Stavrovskaya, Irina G., Sugimori, Mutsuyuki, Llinás, Rodolfo, Kristal, Bruce S., Hayden, Michael R., Bezprozvanny, Ilya. Disturbed Ca2+signaling and apoptosis of medium spiny neurons in Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, vol.102, no.7, 2602-2607.

  52. Zeron, Melinda M, Hansson, Oskar, Chen, Nansheng, Wellington, Cheryl L, Leavitt, Blair R, Brundin, Patrik, Hayden, Michael R, Raymond, Lynn A. Increased Sensitivity to N-Methyl-D-Aspartate Receptor-Mediated Excitotoxicity in a Mouse Model of Huntington's Disease. Neuron, vol.33, no.6, 849-860.

  53. 10.1097/00005072-199902000-00006 

  54. Hodgson, J.Graeme, Agopyan, Nadia, Gutekunst, Claire-Anne, Leavitt, Blair R, LePiane, Fred, Singaraja, Roshni, Smith, Desmond J, Bissada, Nagat, McCutcheon, Krista, Nasir, Jamal, Jamot, Laure, Li, Xiao-Jiang, Stevens, Mary E, Rosemond, Erica, Roder, John C, Phillips, Anthony G, Rubin, Edward M, Hersch, Steven M, Hayden, Michael R. A YAC Mouse Model for Huntington’s Disease with Full-Length Mutant Huntingtin, Cytoplasmic Toxicity, and Selective Striatal Neurodegeneration. Neuron, vol.23, no.1, 181-192.

  55. Laforet, Genevieve A., Sapp, Ellen, Chase, Kathryn, McIntyre, Charmian, Boyce, Frederick M., Campbell, Mary, Cadigan, Beth A., Warzecki, Lori, Tagle, Danilo A., Reddy, P. Hemachandra, Cepeda, Carlos, Calvert, Christopher R., Jokel, Eve S., Klapstein, Gloria J., Ariano, Marjorie A., Levine, Michael S., DiFiglia, Marian, Aronin, Neil. Changes in Cortical and Striatal Neurons Predict Behavioral and Electrophysiological Abnormalities in a Transgenic Murine Model of Huntington's Disease. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.21, no.23, 9112-9123.

  56. Li, He, Li, Shi-Hua, Johnston, Heather, Shelbourne, Peggy F., Li, Xiao-Jiang. Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nature genetics, vol.25, no.4, 385-389.

  57. Saudou, Frédéric, Finkbeiner, Steven, Devys, Didier, Greenberg, Michael E. Huntingtin Acts in the Nucleus to Induce Apoptosis but Death Does Not Correlate with the Formation of Intranuclear Inclusions. Cell, vol.95, no.1, 55-66.

  58. Zuccato, Chiara, Cattaneo, Elena. Role of brain-derived neurotrophic factor in Huntington's disease. Progress in neurobiology, vol.81, no.5, 294-330.

  59. Steffan, Joan S., Bodai, Laszlo, Pallos, Judit, Poelman, Marnix, McCampbell, Alexander, Apostol, Barbara L., Kazantsev, Alexsey, Schmidt, Emily, Zhu, Ya-Zhen, Greenwald, Marilee, Kurokawa, Riki, Housman, David E., Jackson, George R., Marsh, J. Lawrence, Thompson, Leslie M.. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature, vol.413, no.6857, 739-743.

  60. Hockly, Emma, Richon, Victoria M., Woodman, Benjamin, Smith, Donna L., Zhou, Xianbo, Rosa, Eddie, Sathasivam, Kirupa, Ghazi-Noori, Shabnam, Mahal, Amarbirpal, Lowden, Philip A. S., Steffan, Joan S., Marsh, J. Lawrence, Thompson, Leslie M., Lewis, Cathryn M., Marks, Paul A., Bates, Gillian P.. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, vol.100, no.4, 2041-2046.

  61. Ferrante, Robert J., Kubilus, James K., Lee, Junghee, Ryu, Hoon, Beesen, Ayshe, Zucker, Birgit, Smith, Karen, Kowall, Neil W., Ratan, Rajiv R., Luthi-Carter, Ruth, Hersch, Steven M.. Histone Deacetylase Inhibition by Sodium Butyrate Chemotherapy Ameliorates the Neurodegenerative Phenotype in Huntington's Disease Mice. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.23, no.28, 9418-9427.

  62. Jia, Haiqun, Kast, Ryan J., Steffan, Joan S., Thomas, Elizabeth A.. Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington's disease mice: implications for the ubiquitin-proteasomal and autophagy systems. Human molecular genetics, vol.21, no.24, 5280-5293.

  63. Ryu, Hoon, Lee, Junghee, Hagerty, Sean W., Soh, Byoung Yul, McAlpin, Sara E., Cormier, Kerry A., Smith, Karen M., Ferrante, Robert J.. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, vol.103, no.50, 19176-19181.

  64. Lee, J, Hong, Y K, Jeon, G S, Hwang, Y J, Kim, K Y, Seong, K H, Jung, M-K, Picketts, D J, Kowall, N W, Cho, K S, Ryu, H. ATRX induction by mutant huntingtin via Cdx2 modulates heterochromatin condensation and pathology in Huntington's disease. Cell death and differentiation, vol.19, no.7, 1109-1116.

  65. Lee, Junghee, Hwang, Yu Jin, Shin, Jong-Yeon, Lee, Won-Chul, Wie, Jinhong, Kim, Ki Yoon, Lee, Min Young, Hwang, Daehee, Ratan, Rajiv R., Pae, Ae Nim, Kowall, Neil W., So, Insuk, Kim, Jong-Il, Ryu, Hoon. Epigenetic regulation of cholinergic receptor M1 (CHRM1) by histone H3K9me3 impairs Ca2+ signaling in Huntington’s disease. Acta neuropathologica, vol.125, no.5, 727-739.

  66. Cha, J.H.J.. Transcriptional signatures in Huntington's disease. Progress in neurobiology, vol.83, no.4, 228-248.

  67. Brandt, J., Bylsma, F. W., Gross, R., Stine, O. C., Ranen, N., Ross, C. A.. Trinucleotide repeat length and clinical progression in Huntington's disease. Neurology, vol.46, no.2, 527-531.

  68. Campodonico, J R, Codori, A M, Brandt, J. Neuropsychological stability over two years in asymptomatic carriers of the Huntington's disease mutation.. Journal of neurology, neurosurgery, and psychiatry, vol.61, no.6, 621-624.

  69. Langbehn, DR, Brinkman, RR, Falush, D, Paulsen, JS, Hayden, MR. A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clinical genetics, vol.65, no.4, 267-277.

  70. Friedman, Joseph H, Trieschmann, Martha E, Myers, Richard H, Fernandez, Hubert H. Monozygotic twins discordant for Huntington disease after 7 years.. Archives of neurology, vol.62, no.6, 995-997.

  71. Anca, M.H., Gazit, E., Loewenthal, R., Ostrovsky, O., Frydman, M., Giladi, N.. Different phenotypic expression in monozygotic twins with Huntington disease. American Journal of Medical Genetics. Part A, vol.a124, no.1, 89-91.

  72. Olsson, M, Björklund, A, Campbell, K. Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience, vol.84, no.3, 867-876.

  73. Stenman, Jan, Toresson, Håkan, Campbell, Kenneth. Identification of Two Distinct Progenitor Populations in the Lateral Ganglionic Eminence: Implications for Striatal and Olfactory Bulb Neurogenesis. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.23, no.1, 167-174.

  74. Ehrlich, Michelle E.. Huntington's Disease and the Striatal Medium Spiny Neuron: Cell-Autonomous and Non-Cell-Autonomous Mechanisms of Disease. Neurotherapeutics, vol.9, no.2, 270-284.

  75. Ouimet, Charles C, Langley-Gullion, Kathryn C, Greengard, Paul. Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen. Brain research, vol.808, no.1, 8-12.

  76. Fricker, R.A, Torres, E.M, Dunnett, S.B. The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. : I. Morphological characteristics. Neuroscience, vol.79, no.3, 695-710.

  77. Carri, Alessia Delli, Onorati, Marco, Lelos, Mariah J., Castiglioni, Valentina, Faedo, Andrea, Menon, Ramesh, Camnasio, Stefano, Vuono, Romina, Spaiardi, Paolo, Talpo, Francesca, Toselli, Mauro, Martino, Gianvito, Barker, Roger A., Dunnett, Stephen B., Biella, Gerardo, Cattaneo, Elena. Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development, vol.140, no.2, 301-312.

  78. Reiner, A, Albin, R L, Anderson, K D, D'Amato, C J, Penney, J B, Young, A B. Differential loss of striatal projection neurons in Huntington disease.. Proceedings of the National Academy of Sciences of the United States of America, vol.85, no.15, 5733-5737.

  79. Ross, Christopher A, Tabrizi, Sarah J. Huntington's disease: from molecular pathogenesis to clinical treatment. The Lancet. Neurology, vol.10, no.1, 83-98.

  80. Lerou, Paul H, Yabuuchi, Akiko, Huo, Hongguang, Takeuchi, Ayumu, Shea, Jessica, Cimini, Tina, Ince, Tan A, Ginsburg, Elizabeth, Racowsky, Catherine, Daley, George Q. Human embryonic stem cell derivation from poor-quality embryos. Nature biotechnology, vol.26, no.2, 212-214.

  81. Murry, Charles E., Keller, Gordon. Differentiation of Embryonic Stem Cells to Clinically Relevant Populations: Lessons from Embryonic Development. Cell, vol.132, no.4, 661-680.

  82. Bradley, Cara K., Scott, Heather A., Chami, Omar, Peura, Teija T., Dumevska, Biljana, Schmidt, Uli, Stojanov, Tomas. Derivation of Huntington's Disease-Affected Human Embryonic Stem Cell Lines. Stem cells and development, vol.20, no.3, 495-502.

  83. Tachibana, M., Amato, P., Sparman, M., Gutierrez, N., Tippner-Hedges, R., Ma, H., Kang, E., Fulati, A., Lee, H.S., Sritanaudomchai, H., Masterson, K., Larson, J., Eaton, D., Sadler-Fredd, K., Battaglia, D., Lee, D., Wu, D., Jensen, J., Patton, P., Gokhale, S., Stouffer, Richard L., Wolf, D., Mitalipov, S.. Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. Cell, vol.153, no.6, 1228-1238.

  84. Zhang, Ningzhe, An, Mahru C., Montoro, Daniel, Ellerby, Lisa M.. Characterization of Human Huntington's Disease Cell Model from Induced Pluripotent Stem Cells. PLoS currents, vol.2, RRN1193-.

  85. Camnasio, S., Carri, A.D., Lombardo, A., Grad, I., Mariotti, C., Castucci, A., Rozell, B., Riso, P.L., Castiglioni, V., Zuccato, C., Rochon, C., Takashima, Y., Diaferia, G., Biunno, I., Gellera, C., Jaconi, M., Smith, A., Hovatta, O., Naldini, L., Di Donato, S., Feki, A., Cattaneo, E.. The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiology of disease, vol.46, no.1, 41-51.

  86. Jeon, Iksoo, Lee, Nayeon, Li, Jia-Yi, Park, In-Hyun, Park, Kyoung Sun, Moon, Jisook, Shim, Sung Han, Choi, Chunggab, Chang, Da-Jeong, Kwon, Jihye, Oh, Seung-Hun, Shin, Dong Ah, Kim, Hyun Sook, Do, Jeong Tae, Lee, Dong Ryul, Kim, Manho, Kang, Kyung-Sun, Daley, George Q., Brundin, Patrik, Song, Jihwan. Neuronal Properties, In Vivo Effects, and Pathology of a Huntington's Disease Patient-Derived Induced Pluripotent Stem Cells. Stem cells®, vol.30, no.9, 2054-2062.

  87. Hargus, Gunnar, Ehrlich, Marc, Hallmann, Anna-Lena, Kuhlmann, Tanja. Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta neuropathologica, vol.127, no.2, 151-173.

  88. An, Mahru C., Zhang, Ningzhe, Scott, Gary, Montoro, Daniel, Wittkop, Tobias, Mooney, Sean, Melov, Simon, Ellerby, Lisa M.. Genetic Correction of Huntington's Disease Phenotypes in Induced Pluripotent Stem Cells. Cell stem cell, vol.11, no.2, 253-263.

  89. The HD iPSC Consortium,. Induced Pluripotent Stem Cells from Patients with Huntington's Disease Show CAG-Repeat-Expansion-Associated Phenotypes. Cell stem cell, vol.11, no.2, 264-278.

  90. Chin, Mark H., Mason, Mike J., Xie, Wei, Volinia, Stefano, Singer, Mike, Peterson, Cory, Ambartsumyan, Gayane, Aimiuwu, Otaren, Richter, Laura, Zhang, Jin, Khvorostov, Ivan, Ott, Vanessa, Grunstein, Michael, Lavon, Neta, Benvenisty, Nissim, Croce, Carlo M., Clark, Amander T., Baxter, Tim, Pyle, April D., Teitell, Mike A., Pelegrini, Matteo, Plath, Kathrin, Lowry, William E.. Induced Pluripotent Stem Cells and Embryonic Stem Cells Are Distinguished by Gene Expression Signatures. Cell stem cell, vol.5, no.1, 111-123.

  91. Wilson, Kitchener D., Venkatasubrahmanyam, Shivkumar, Jia, Fangjun, Sun, Ning, Butte, Atul J., Wu, Joseph C.. MicroRNA Profiling of Human-Induced Pluripotent Stem Cells. Stem cells and development, vol.18, no.5, 749-757.

  92. Stadtfeld, Matthias, Apostolou, Effie, Akutsu, Hidenori, Fukuda, Atsushi, Follett, Patricia, Natesan, Sridaran, Kono, Tomohiro, Shioda, Toshi, Hochedlinger, Konrad. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, vol.465, no.7295, 175-181.

  93. Guenther, Matthew G., Frampton, Garrett M., Soldner, Frank, Hockemeyer, Dirk, Mitalipova, Maya, Jaenisch, Rudolf, Young, Richard A.. Chromatin Structure and Gene Expression Programs of Human Embryonic and Induced Pluripotent Stem Cells. Cell stem cell, vol.7, no.2, 249-257.

  94. Ring, Karen L., Tong, Leslie M., Balestra, Maureen E., Javier, Robyn, Andrews-Zwilling, Yaisa, Li, Gang, Walker, David, Zhang, William R., Kreitzer, Anatol C., Huang, Yadong. Direct Reprogramming of Mouse and Human Fibroblasts into Multipotent Neural Stem Cells with a Single Factor. Cell stem cell, vol.11, no.1, 100-109.

  95. Liu, Xinjian, Li, Fang, Stubblefield, Elizabeth A, Blanchard, Barbara, Richards, Toni L, Larson, Gaynor A, He, Yujun, Huang, Qian, Tan, Aik-Choon, Zhang, Dabing, Benke, Timothy A, Sladek, John R, Zahniser, Nancy R, Li, Chuan-Yuan. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell research, vol.22, no.2, 321-332.

  96. Margariti, Andriana, Winkler, Bernhard, Karamariti, Eirini, Zampetaki, Anna, Tsai, Tsung-neng, Baban, Dilair, Ragoussis, Jiannis, Huang, Yi, Han, Jing-Dong J., Zeng, Lingfang, Hu, Yanhua, Xu, Qingbo. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proceedings of the National Academy of Sciences of the United States of America, vol.109, no.34, 13793-13798.

  97. Shi, Zixiao, Jiao, Jianwei. Direct lineage conversion: induced neuronal cells and induced neural stem cells. Protein & cell, vol.3, no.11, 826-833.

  98. Ambasudhan, Rajesh, Talantova, Maria, Coleman, Ronald, Yuan, Xu, Zhu, Saiyong, Lipton, Stuart A., Ding, Sheng. Direct Reprogramming of Adult Human Fibroblasts to Functional Neurons under Defined Conditions. Cell stem cell, vol.9, no.2, 113-118.

  99. Xue, Y., Ouyang, K., Huang, J., Zhou, Y., Ouyang, H., Li, H., Wang, G., Wu, Q., Wei, C., Bi, Y., Jiang, L., Cai, Z., Sun, H., Zhang, K., Zhang, Y., Chen, J., Fu, X.D.. Direct Conversion of Fibroblasts to Neurons by Reprogramming PTB-Regulated MicroRNA Circuits. Cell, vol.152, no.1, 82-96.

  100. Berry, Nicholas, Gursel, Demirkan B., Boockvar, John A.. Direct Conversion of Human Fibroblasts to Functional Neurons in One Step. Neurosurgery, vol.69, no.6, N18-N19.

  101. Kim, Janghwan, Efe, Jem A., Zhu, Saiyong, Talantova, Maria, Yuan, Xu, Wang, Shufen, Lipton, Stuart A., Zhang, Kang, Ding, Sheng. Direct reprogramming of mouse fibroblasts to neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, vol.108, no.19, 7838-7843.

  102. Thier, M., Worsdorfer, P., Lakes, Yenal B., Gorris, R., Herms, S., Opitz, T., Seiferling, D., Quandel, T., Hoffmann, P., Nothen, M.M., Brustle, O., Edenhofer, F.. Direct Conversion of Fibroblasts into Stably Expandable Neural Stem Cells. Cell stem cell, vol.10, no.4, 473-479.

  103. Fong, Chui‐Yee, Gauthaman, Kalamegam, Bongso, Ariff. Teratomas from pluripotent stem cells: A clinical hurdle. Journal of cellular biochemistry, vol.111, no.4, 769-781.

  104. Miura, Kyoko, Okada, Yohei, Aoi, Takashi, Okada, Aki, Takahashi, Kazutoshi, Okita, Keisuke, Nakagawa, Masato, Koyanagi, Michiyo, Tanabe, Koji, Ohnuki, Mari, Ogawa, Daisuke, Ikeda, Eiji, Okano, Hideyuki, Yamanaka, Shinya. Variation in the safety of induced pluripotent stem cell lines. Nature biotechnology, vol.27, no.8, 743-745.

  105. Yamanaka, Shinya. A Fresh Look at iPS Cells. Cell, vol.137, no.1, 13-17.

  106. Ma, L., Hu, B., Liu, Y., Vermilyea, S., Liu, H., Gao, L., Sun, Y., Zhang, X., Zhang, S.C.. Human Embryonic Stem Cell-Derived GABA Neurons Correct Locomotion Deficits in Quinolinic Acid-Lesioned Mice. Cell stem cell, vol.10, no.4, 455-464.

  107. Hong, Sunghoi, Chung, Sangmi, Leung, Kaka, Hwang, Insik, Moon, Jisook, Kim, Kwang-Soo. Functional Roles of Nurr1, Pitx3, and Lmx1a in Neurogenesis and Phenotype Specification of Dopamine Neurons During In Vitro Differentiation of Embryonic Stem Cells. Stem cells and development, vol.23, no.5, 477-487.

  108. Andersson, Elisabet, Tryggvason, Ulrika, Deng, Qiaolin, Friling, Stina, Alekseenko, Zhanna, Robert, Benoit, Perlmann, Thomas, Ericson, Johan. Identification of Intrinsic Determinants of Midbrain Dopamine Neurons. Cell, vol.124, no.2, 393-405.

  109. Hong, Sunghoi, Kang, Un Jung, Isacson, Ole, Kim, Kwang-Soo. Neural precursors derived from human embryonic stem cells maintain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons. Journal of neurochemistry, vol.104, no.2, 316-324.

  110. Park, Chang-Hwan, Minn, Yang-Ki, Lee, Ji-Yeon, Choi, Dong Ho, Chang, Mi-Yoon, Shim, Jae-Won, Ko, Ji-Yun, Koh, Hyun-Chul, Kang, Min Jeong, Kang, Jin Sun, Rhie, Duck-Joo, Lee, Yong-Sung, Son, Hyeon, Moon, Shin Yong, Kim, Kwang-Soo, Lee, Sang-Hun. In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. Journal of neurochemistry, vol.92, no.5, 1265-1276.

  111. Aubry, Laetitia, Bugi, Aurore, Lefort, Nathalie, Rousseau, France, Peschanski, Marc, Perrier, Anselme L.. Striatal progenitors derived from human ES cells mature into DARPP32 neuronsin vitroand in quinolinic acid-lesioned rats. Proceedings of the National Academy of Sciences of the United States of America, vol.105, no.43, 16707-16712.

  112. Joannides, Alexis J., Fiore-Hériché, Christelle, Battersby, Alysia A., Athauda-Arachchi, Pandula, Bouhon, Isabelle A., Williams, Lydia, Westmore, Kristine, Kemp, Paul J., Compston, Alastair, Allen, Nicholas D., Chandran, Siddharthan. A Scaleable and Defined System for Generating Neural Stem Cells from Human Embryonic Stem Cells. Stem cells®, vol.25, no.3, 731-737.

  113. Joannides, Alexis J, Webber, Daniel J, Raineteau, Olivier, Kelly, Claire, Irvine, Karen-Amanda, Watts, Colin, Rosser, Anne E, Kemp, Paul J, Blakemore, William F, Compston, Alastair, Caldwell, Maeve A, Allen, Nicholas D, Chandran, Siddharthan. Environmental signals regulate lineage choice and temporal maturation of neural stem cells from human embryonic stem cells.. Brain : a journal of neurology, vol.130, no.5, 1263-1275.

  114. Development Zhang X. M. 943 128 2001 10.1242/dev.128.6.943 Regulation of retinal ganglion cell production by Sonic hedgehog. 

  115. Lindvall, Olle, Kokaia, Zaal. Stem cells in human neurodegenerative disorders - time for clinical translation?. The Journal of clinical investigation, vol.120, no.1, 29-40.

  116. Watanabe, Kiichi, Ueno, Morio, Kamiya, Daisuke, Nishiyama, Ayaka, Matsumura, Michiru, Wataya, Takafumi, Takahashi, Jun B, Nishikawa, Satomi, Nishikawa, Shin-ichi, Muguruma, Keiko, Sasai, Yoshiki. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature biotechnology, vol.25, no.6, 681-686.

  117. Li, Xue-Jun, Zhang, Xiaoqing, Johnson, M. Austin, Wang, Zhi-Bo, LaVaute, Timothy, Zhang, Su-Chun. Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development, vol.136, no.23, 4055-4063.

  118. Nasonkin, Igor, Mahairaki, Vasiliki, Xu, Leyan, Hatfield, Glen, Cummings, Brian J., Eberhart, Charles, Ryugo, David K., Maric, Dragan, Bar, Eli, Koliatsos, Vassilis E.. Long-Term, Stable Differentiation of Human Embryonic Stem Cell-Derived Neural Precursors Grafted into the Adult Mammalian Neostriatum. Stem cells®, vol.27, no.10, 2414-2426.

  119. Goulburn, Adam L., Alden, Darym, Davis, Richard P., Micallef, Suzanne J., Ng, Elizabeth S., Yu, Qing C., Lim, Sue Mei, Soh, Chew-Li, Elliott, David A., Hatzistavrou, Tanya, Bourke, Justin, Watmuff, Bradley, Lang, Richard J., Haynes, John M., Pouton, Colin W., Giudice, Antonietta, Trounson, Alan O., Anderson, Stewart A., Stanley, Edouard G., Elefanty, Andrew G.. A Targeted NKX2.1 Human Embryonic Stem Cell Reporter Line Enables Identification of Human Basal Forebrain Derivatives. Stem cells®, vol.29, no.3, 462-473.

  120. El-Akabawy, Gehan, Medina, Lourdes Martinez, Jeffries, Aaron, Price, Jack, Modo, Michel. Purmorphamine Increases DARPP-32 Differentiation in Human Striatal Neural Stem Cells Through the Hedgehog Pathway. Stem cells and development, vol.20, no.11, 1873-1887.

  121. Nistor, Gabriel, Siegenthaler, Monica M., Poirier, Stephane N., Rossi, Sharyn, Poole, Aleksandra J., Charlton, Maura E., McNeish, John D., Airriess, Chris N., Keirstead, Hans S.. Derivation of High Purity Neuronal Progenitors from Human Embryonic Stem Cells. PloS one, vol.6, no.6, e20692-.

  122. Nat, Roxana, Salti, Ahmad, Suciu, Laura, Ström, Susanne, Dechant, Georg. Pharmacological Modulation of the Hedgehog Pathway Differentially Affects Dorsal/Ventral Patterning in Mouse and Human Embryonic Stem Cell Models of Telencephalic Development. Stem cells and development, vol.21, no.7, 1016-1046.

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로