$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Unsupervised interaction-preserving discretization of multivariate data

Data mining and knowledge discovery, v.28 no.5/6, 2014년, pp.1366 - 1397  

Nguyen, Hoang-Vu ,  Müller, Emmanuel ,  Vreeken, Jilles ,  Böhm, Klemens

초록이 없습니다.

참고문헌 (49)

  1. Aggarwal CC, Yu PS (2001) Outlier detection for high dimensional data. In: SIGMOD Conference, p 37-46. 

  2. 10.1145/276305.276314 Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional data for data mining applications. In: SIGMOD Conference, p 94-105. 

  3. 10.1145/2396761.2396816 Akoglu L, Tong H, Vreeken J, Faloutsos C (2012) Fast and reliable anomaly detection in categorical data. In: CIKM, p 415-424. 

  4. Commun ACM JF Allen 26 11 832 1983 10.1145/182.358434 Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832-843 

  5. J Log Comput JF Allen 4 5 531 1994 10.1093/logcom/4.5.531 Allen JF, Ferguson G (1994) Actions and events in interval temporal logic. J Log Comput 4(5):531-579 

  6. Ann Stat A Aue 37 6B 4046 2009 10.1214/09-AOS707 Aue A, Hörmann S, Horváth L, Reimherr M (2009) Break detection in the covariance structure of multivariate time series models. Ann Stat 37(6B):4046-4087 

  7. Knowl Inf Syst SD Bay 3 4 491 2001 10.1007/PL00011680 Bay SD (2001) Multivariate discretization for set mining. Knowl Inf Syst 3(4):491-512 

  8. Bay SD, Pazzani MJ (1999) Detecting change in categorical data: Mining contrast sets. In: KDD, p 302-306. 

  9. Mach Learn L Breiman 45 1 5 2001 10.1023/A:1010933404324 Breiman L (2001) Random forests. Mach Learn 45(1):5-32 

  10. J Am Stat Assoc L Breiman 80 391 580 1985 10.1080/01621459.1985.10478157 Breiman L, Friedman JH (1985) Estimating optimal transformations for multiple regression and correlation. J Am Stat Assoc 80(391):580-598 

  11. 10.1145/335191.335388 Breunig MM, Kriegel HP, Raymond T Ng JS (2000) LOF: identifying density-based local outliers. In: SIGMOD Conference, p 93-104. 

  12. Bu S, Lakshmanan LVS, Ng RT (2005) Mdl summarization with holes. In: VLDB, p 433-444. 

  13. 10.1145/312129.312199 Cheng CH, Fu AWC, Zhang Y (1999) Entropy-based subspace clustering for mining numerical data. In: KDD, p 84-93. 

  14. TM Cover 2006 Elements of information theory Cover TM, Thomas JA (2006) Elements of information theory. Wiley, New York 

  15. J Mach Learn Res J Demsar 7 1 2006 Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1-30 

  16. Fayyad UM, Irani KB (1993) Multi-interval discretization of continuous-valued attributes for classification learning. In: IJCAI, p 1022-1029. 

  17. 10.1007/11510888_25 Ferrandiz S, Boullé M (2005) Multivariate discretization by recursive supervised bipartition of graph. In: MLDM, p 253-264. 

  18. Data Min Knowl Discov H Grosskreutz 19 2 210 2009 10.1007/s10618-009-0136-3 Grosskreutz H, Rüping S (2009) On subgroup discovery in numerical domains. Data Min Knowl Discov 19(2):210-226 

  19. PD Grünwald 2007 10.7551/mitpress/4643.001.0001 The minimum description length principle Grünwald PD (2007) The minimum description length principle. MIT Press, Cambridge 

  20. 10.1145/335191.335448 Gunopulos D, Kollios G, Tsotras VJ, Domeniconi C (2000) Approximating multi-dimensional aggregate range queries over real attributes. In: SIGMOD Conference, p 463-474. 

  21. Data Min Knowl Disc J Han 15 55 2007 10.1007/s10618-006-0059-1 Han J, Cheng H, Xin D, Yan X (2007) Frequent pattern mining: current status and future directions. Data Min Knowl Disc 15:55-86 

  22. 10.1007/11811220_47 Kang Y, Wang S, Liu X, Lai H, Wang H, Miao B (2006) An ICA-based multivariate discretization algorithm. In: KSEM, p 556-562. 

  23. Kerber R (1992) ChiMerge: discretization of numeric attributes. In: AAAI, p 123-128. 

  24. J Mach Learn Res P Kontkanen 2 219 2007 Kontkanen P, Myllymäki P (2007) MDL histogram density estimation. J Mach Learn Res 2:219-226 

  25. 10.1016/B978-155860869-6/50073-1 Lakshmanan LVS, Ng RT, Wang CX, Zhou X, Johnson T (2002) The generalized MDL approach for summarization. In: VLDB, p 766-777. 

  26. J Lee 2007 10.1007/978-0-387-39351-3 Nonlinear dimensionality reduction Lee J, Verleysen M (2007) Nonlinear dimensionality reduction. Springer, New York 

  27. 10.1007/978-3-642-40994-3_19 Lemmerich F, Becker M, Puppe F (2013) Difference-based estimates for generalization-aware subgroup discovery. In: ECML/PKDD (3), p 288-303. 

  28. J Nonparametr Stat R Liu 20 8 661 2008 10.1080/10485250802326391 Liu R, Yang L (2008) Kernel estimation of multivariate cumulative distribution function. J Nonparametr Stat 20(8):661-677 

  29. ACM TKDD M Mampaey 6 1 2012 10.1145/2382577.2382580 Mampaey M, Vreeken J, Tatti N (2012) Summarizing data succinctly with the most informative itemsets. ACM TKDD 6:1-44 

  30. IEEE Trans Knowl Data Eng S Mehta 17 9 1174 2005 10.1109/TKDE.2005.153 Mehta S, Parthasarathy S, Yang H (2005) Toward unsupervised correlation preserving discretization. IEEE Trans Knowl Data Eng 17(9):1174-1185 

  31. 10.1145/1401890.1401956 Moise G, Sander J (2008) Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering. In: KDD, p 533-541. 

  32. 10.1137/1.9781611972795.16 Müller E, Assent I, Krieger R, Günnemann S, Seidl T (2009) DensEst: density estimation for data mining in high dimensional spaces. In: SDM, p 173-184. 

  33. 10.1137/1.9781611972832.22 Nguyen HV, Müller E, Vreeken J, Keller F, Böhm K (2013) CMI: an information-theoretic contrast measure for enhancing subspace cluster and outlier detection. In: SDM, p 198-206. 

  34. IEEE Trans Pattern Anal Mach Intell S Peleg 11 7 739 1989 10.1109/34.192468 Peleg S, Werman M, Rom H (1989) A unified approach to the change of resolution: space and gray-level. IEEE Trans Pattern Anal Mach Intell 11(7):739-742 

  35. Philip Preuß HD Ruprecht Puchstein (2013) Detection of multiple structural breaks in multivariate time series. arXiv:1309.1309v1 . 

  36. Signal Process M Rao 91 1 15 2011 10.1016/j.sigpro.2010.06.002 Rao M, Seth S, Xu JW, Chen Y, Tagare H, Príncipe JC (2011) A test of independence based on a generalized correlation function. Signal Process 91(1):15-27 

  37. Science DN Reshef 334 6062 1518 2011 10.1126/science.1205438 Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC (2011) Detecting novel associations in large data sets. Science 334(6062):1518-1524 

  38. Automatica J Rissanen 14 1 465 1978 10.1016/0005-1098(78)90005-5 Rissanen J (1978) Modeling by shortest data description. Automatica 14(1):465-471 

  39. Ann Stat J Rissanen 11 2 416 1983 10.1214/aos/1176346150 Rissanen J (1983) Modeling by shortest data description. Ann Stat 11(2):416-431 

  40. 10.1088/0004-637X/764/2/167 Scargle JD, Norris JP, Jackson B, Chiang J (2013) Studies in astronomical time series analysis. vi. Bayesian block representations. Astrophys J 764(2) 

  41. IEEE Trans Signal Process S Seth 59 8 3624 2011 10.1109/TSP.2011.2153197 Seth S, Rao M, Park I, Príncipe JC (2011) A unified framework for quadratic measures of independence. IEEE Trans Signal Process 59(8):3624-3635 

  42. BW Silverman 1986 10.1007/978-1-4899-3324-9 Density estimation for statistics and data analysis Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall/CRC, London 

  43. 10.1109/ICDM.2008.39 Tatti N, Vreeken J (2008) Finding good itemsets by packing data. In: ICDM, p 588-597. 

  44. PVLDB K Tzoumas 4 11 852 2011 Tzoumas K, Deshpande A, Jensen CS (2011) Lightweight graphical models for selectivity estimation without independence assumptions. PVLDB 4(11):852-863 

  45. IEEE Trans Inf Theory NK Vereshchagin 50 12 3265 2004 10.1109/TIT.2004.838346 Vereshchagin NK, Vitányi PMB (2004) Kolmogorov’s structure functions and model selection. IEEE Trans Inf Theory 50(12):3265-3290 

  46. Data Min Knowl Disc J Vreeken 23 1 169 2011 10.1007/s10618-010-0202-x Vreeken J, van Leeuwen M, Siebes A (2011) Krimp: mining itemsets that compress. Data Min Knowl Disc 23(1):169-214 

  47. Energy Build A Wagner 68 634 2014 10.1016/j.enbuild.2013.09.047 Wagner A, Lützkendorf T, Voss K, Spars G, Maas A, Herkel S (2014) Performance analysis of commercial buildings: results and experiences from the german demonstration program ‘energy optimized building (EnOB)’. Energy Build 68:634-638 

  48. PVLDB X Yang 2 1 634 2009 Yang X, Procopiuc CM, Srivastava D (2009) Summarizing relational databases. PVLDB 2(1):634-645 

  49. PVLDB X Yang 4 11 899 2011 Yang X, Procopiuc CM, Srivastava D (2011) Summary graphs for relational database schemas. PVLDB 4(11):899-910 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로