$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Cylindrical Coordinates Security Visualization for multiple domain command and control botnet detection

Computers & security, v.46, 2014년, pp.141 - 153  

Seo, I. ,  Lee, H. ,  Han, S.C.

Abstract AI-Helper 아이콘AI-Helper

The botnets are one of the most dangerous species of network-based attack. They cause severe network disruptions through massive coordinated attacks nowadays and the results of this disruption frequently cost enterprises large sums in financial losses. In this paper, we make an in-depth investigatio...

Keyword

참고문헌 (48)

  1. Abdullah 1 2005 Proceedings of the IEEE workshop on Visualization for Computer Security, VizSec'05 Ids rainstorm: visualizing ids alarms 

  2. Antonakakis 273 2010 USENIX Security Symposium Building a dynamic reputation system for DNS 

  3. Ball 55 2004 Proceedings of the 2004 ACM workshop on Visualization and data mining for computer security (VizSEC/DMSEC) Home-centric visualization of network traffic for security administration 

  4. Bilge 2011 NDSS Exposure: finding malicious domains using passive DNS analysis 

  5. Annu Rev Neurosci Born 28 157 2005 10.1146/annurev.neuro.26.041002.131052 Structure and function of visual area MT 

  6. Brustoloni 1 2009 Communications, 2009. ICC'09. IEEE International Conference on Efficient detection of bots in subscribers' computers 

  7. Chiang 10 2007 Proceedings of the 1st Workshop on Hot Topics in Understanding Botnets A case study of the rustock rootkit and spam bot 

  8. Comput Secur Choi 28 5 276 2009 10.1016/j.cose.2008.12.003 Fast detection and visualization of network attacks on parallel coordinate 

  9. Choi 715 2007 Proceedings of the 7th IEEE International Conference on Computer and Information Technology, 2007. CIT'07 Botnet detection by monitoring group activities in DNS traffic 

  10. Colombe 138 2004 Proceedings of the 2004 ACM workshop on Visualization and data mining for computer security Statistical profiling and visualization for detection of malicious insider attacks on computer networks 

  11. Conti 45 2004 Proceedings of CCS Workshop on Visualization and Data Mining for Compute Security Passive visual fingerprinting of network attack tools 

  12. Dagon vol. 2005 2005 Botnet detection and response 

  13. DNS-BH. Malware prevention through domain blocking. http://www.malwaredomains.com. 

  14. Erbacher 2004 Proceedings of the IASTED International Conference On Visualization, Imaging, and Image Processing Fusion and summarization of behavior for intrusion detection visualization 

  15. Fink 2004 Submitted for consideration at ACM CCS Workshop on Visualization and Data Mining for Computer Security (VizSec/DMSec) Network eye: end-to-end computer security visualization 

  16. Fischer 111 2008 Proceedings of the 5th International Workshop on Visualization for Computer Security. VizSec'08 Large-scale network monitoring for visual analysis of attacks 

  17. Softw Pract Exp Fruchterman 21 11 1129 1991 10.1002/spe.4380211102 Graph drawing by force-directed placement 

  18. Gu 139 2008 Proceedings of the 17th Conference on Security Symposium Botminer: clustering analysis of network traffic for protocol- and structure-independent botnet detection 

  19. Gu 12 2007 Proceedings of 16th USENIX Security Symposium on USENIX Security Symposium Bothunter: detecting malware infection through IDS-driven dialog correlation 

  20. Harel 545 2007 Proceeding of Neural Information Processing Systems. NIPS'09 Graph-based visual saliency 

  21. Iliofotou 1 2009 INFOCOM Workshops 2009, IEEE Exploring graph-based network traffic monitoring 

  22. IEICE Trans Commun Ishibashi 95 3 794 2012 Extending black domain name list by using co-occurrence relation between DNS queries 

  23. Nat Rev Neurosci Itti 2 3 194 2001 10.1038/35058500 Computational modelling of visual attention 

  24. IEEE Trans Pattern Anal Mach Intell Itti 20 11 1254 1998 10.1109/34.730558 A model of saliency-based visual attention for rapid scene analysis 

  25. Jung 370 2004 Proceedings of the 4th ACM SIGCOMM conference on Internet measurement An empirical study of spam traffic and the use of DNS black lists 

  26. Kovacs 2011 Inspecting DNS flow traffic for purposes of botnet detection 

  27. Kovacs 2013 Microsoft and financial companies disrupt over 1,400 Citadel botnets 

  28. Krasser 42 2005 Proceedings of the 6th IEEE Information Assurance Workshop. IAW'05 Real-time and forensic network data analysis using animated and coordinated visualization 

  29. Li 5430 2009 Proceedings of the 2009 IEEE International Conference on Communications Discernibility analysis and accuracy improvement of machine learning algorithms for network intrusion detection 

  30. Manasrah 2009 Detecting botnet activities based on abnormal DNS traffic 

  31. Mockapetris PV. RFC 1035: domain names-implementation and specification. http://www.ietf.org/rfc/rfc1035.txt. 

  32. Science Moran 229 4715 782 1985 10.1126/science.4023713 Selective attention gates visual processing in the extrastriate cortex 

  33. Muelder 265 2006 Recent advances in intrusion detection Interactive visualization for network and port scan detection 

  34. Vis Res Parkhurst 42 1 107 2002 10.1016/S0042-6989(01)00250-4 Modeling the role of salience in the allocation of overt visual attention 

  35. Porras 2009 Proceedings of the 2nd USENIX Workshop on Large-Scale Exploits and Emergent Threats A foray into conficker's logic and rendezvous points 

  36. Ren 23 2006 Proceedings of the 3rd International Workshop on Visualization for Computer Security Visualizing DNS traffic 

  37. J Adv Comput Intell Intell Inform Resko 10 5 2006 10.20965/jaciii.2006.p0761 Visual cortex inspired intelligent contour detection 

  38. Samak 1 2008 INFOCOM Workshops 2008, IEEE On the efficiency of using space-filling curves in network traffic representation 

  39. Stone-Gross 635 2009 Proceedings of the 16th ACM conference on Computer and Communications Security. CCS'09 Your botnet is my botnet: analysis of a botnet takeover 

  40. Suo 87 2008 Visualization for Computer Security A task centered framework for computer security data visualization 

  41. Symantec 2010 MessageLabs Intelligience:2010 Annual Security Report 

  42. Discret Appl Math Uehara 145 3 479 2005 10.1016/j.dam.2004.06.008 Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs 

  43. Villamarin-Salomon 476 2008 Proceedings of the 5th IEEE Consumer Communications and Networking Conference. CCNC'08 Identifying botnets using anomaly detection techniques applied to DNS traffic 

  44. Villamarin-Salomon 2035 2009 Proceedings of the 2009 ACM symposium on Applied Computing Bayesian bot detection based on DNS traffic similarity 

  45. Von Ahn 294 2003 Advances in Cryptology. EUROCRYPT 2003 Captcha: using hard AI problems for security 

  46. Williams 44 2008 Visualization for Computer Security Garnet: a graphical attack graph and reachability network evaluation tool 

  47. Wyke 2012 Over 9 million PCS infected - zeroaccess botnet uncovered 

  48. Yadav 48 2010 Proceedings of the 10th Annual Conference on Internet Measurement Detecting algorithmically generated malicious domain names 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로