$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load 원문보기

Renewable & sustainable energy reviews, v.41, 2015년, pp.1 - 13  

Gago, E.J. (School of Civil Engineering, University of Granada, Granada, Spain) ,  Muneer, T. (School of Engineering and Built Environment, Edinburgh Napier University, Edinburgh, Scotland, UK) ,  Knez, M. (Faculty of logistics, University of Maribor, Maribor, Slovenia) ,  Köster, H. (Kö)

Abstract AI-Helper 아이콘AI-Helper

Abstract The residential sector is responsible for approximately a quarter of energy consumption in Europe. This consumption, together with that of other buildings, mainly from the tertiary sector, makes up 40% of total energy consumption and 36% of CO2 emissions. Artificial lighting makes up 14% o...

주제어

참고문헌 (140)

  1. Build Res Inf Meijer 37 5 533 2009 10.1080/09613210903189376 Comparing European residential building stocks: performance, renovation and policy opportunities 

  2. European Commission & Directorate-General for Energy and Transport. EU energy and transport in figures; 2010a. 

  3. Huber A, Kortman J, Benito, AM, Scharp M. Developing and implementing. Effective household energy awareness services; 2010. 

  4. EUROSTAT. Energy - yearly statistics 2008; 2010. 

  5. Ghiaus 26 2004 A handbook for intelligent building Energy and environmental issues of smart buildings 

  6. Janssen R. Towards energy efficient buildings in Europe. In: EuroACE. Available from: 〈http://www.euroace.org〉; 2004 [accessed 03.05.10]. 

  7. Energy Build Perez-Lombard 40 394 2008 10.1016/j.enbuild.2007.03.007 A review on buildings energy consumption information 

  8. Directive 2010/31/EU. Energy performance of buildings; 2010. 

  9. European Commission. Communication from the Commission - energy efficiency: delivering the 20% target2008. 

  10. Energy Policy Blok 33 1635 2005 10.1016/j.enpol.2004.02.006 Enhanced policies for the improvement of electricity efficiencies 

  11. Renew Sustain Energy Rev Alrubaih 21 494 2013 10.1016/j.rser.2012.12.057 Research and development on aspects of daylighting fundamentals 

  12. Lancashire DS, Fox AE. Lighting: the way to building efficiency. Consulting-specifying engineer; 1996. p.34-6. 

  13. Energy Build Vine 28 205 1998 10.1016/S0378-7788(98)00023-1 Office worker response to an automated venetian blind and electric lighting system: a pilot study 

  14. Renew Energy Greenup 22 1-3 45 2001 10.1016/S0960-1481(00)00027-6 The importance of interior daylight distribution in buildings on overall energy performance 

  15. Energy Build Canziani 36 11 1163 2004 10.1016/j.enbuild.2004.05.001 Daylight and energy performances of a new type of light pipe 

  16. Energy Policy Aries 36 6 1858 2008 10.1016/j.enpol.2007.05.021 Effect of daylight saving time on lighting energy use: a literature review 

  17. Boyce 2003 The benefits of daylight through windows 

  18. ASHRAE J Heschong 44 65 2002 Daylighting and human performance 

  19. Build Environ Choi 50 65 2012 10.1016/j.buildenv.2011.10.010 Impacts of indoor daylight environments on patient average length of stay (ALOS) in a healthcare facility 

  20. Sustain Built Environ Koster 1 112 2013 10.1007/978-1-4614-5828-9_198 Daylighting controls, performance and global impacts 

  21. Build Environ Kim 45 256 2010 10.1016/j.buildenv.2009.08.024 Overview and new developments in optical daylighting systems for building a healthy indoor environment 

  22. Energy Build Webb 38 7 721 2006 10.1016/j.enbuild.2006.03.004 Considerations for lighting in the built environment: non-visual effects of light 

  23. Sol Energy Hviid 82 787 2008 10.1016/j.solener.2008.03.001 Simple tool to evaluate the impact or daylight on building energy consumption 

  24. Build Environ Ihm 44 509 2009 10.1016/j.buildenv.2008.04.016 Estimation of lighting energy savings from daylighting 

  25. Kim JH, Yeo MS, Kim KW, Yang KW, Park YJ, Lee KH. An experimental study for the evaluation of the environmental performance by the application of the automated venetian blind. In: Proceedings of Clima 2007 WellBeing Indoors, Helsinki, Finland: Clima; 2007. p. 1678-85. 

  26. Renew Energy Kristl 33 694 2008 10.1016/j.renene.2007.03.020 Fuzzy control system for thermal and visual comfort in building 

  27. ASHRAE Trans Lee 95 101 326 1995 The design and evaluation of integrated envelope and lighting control strategies for commercial buildings 

  28. Light Res Technol Roche 34 11 2002 10.1191/1365782802li026oa Summertime performance of and automated lighting and blinds control system 

  29. Sol Energy Tzempelikos 81 369 2007 10.1016/j.solener.2006.06.015 The impact of shading design and control on building cooling and lighting demand 

  30. Energy Build Li 33 8 793 2001 10.1016/S0378-7788(01)00067-6 Evaluation of lighting performance in office buildings with daylighting controls 

  31. Energy Convers Manag Li 47 9-10 1133 2006 10.1016/j.enconman.2005.06.016 Lighting and energy performance for an office using high frequency dimming controls 

  32. Energy Build Chen 73 184 2014 10.1016/j.enbuild.2014.01.030 Experimental and simulation study on the performance of daylighting in an industrial building and its energy saving potential 

  33. Renew Energy Chirarattananon 26 1 69 2002 10.1016/S0960-1481(01)00099-4 Daylight availability and models for global and diffuse horizontal illuminance and irradiance for Bangkok 

  34. Sol Energy Park 75 277 2003 10.1016/j.solener.2003.08.013 Workplane illuminance prediction method for daylighting control systems 

  35. Renew Sustain Energy Rev ul Haq 33 268 2014 10.1016/j.rser.2014.01.090 A review on lighting control technologies in commercial buildings, their performance and affecting factors 

  36. Build Environ Xue 81 51 2014 10.1016/j.buildenv.2014.06.011 The effects of daylighting and human behavior on luminous comfort in residential buildings: a questionnaire survey 

  37. J Renew Sustain Energy Kruger 3 063112 2011 10.1063/1.3670407 Evaluating daylighting potential and energy efficiency in a classroom building 

  38. Renew Sustain Energy Rev Hourani 16 3579 2012 10.1016/j.rser.2012.02.074 Impact of daylight quality on architectural space dynamics case study: City Mall - Amman, Jordan 

  39. DIN 5034 Tageslicht in Innenraumen. (Daylight in interiors) [in German]. 

  40. BS 8206 Part 2 Lighting for buildings e Part 2: Code of practice for daylighting. 

  41. Renew Energy Hraska xxx 1 2014 Chronobiological aspects of green buildings daylighting 

  42. 1454-5837 Ing Iluminatului Hraska 13 2 5 2011 Daylight requirements in sustainable building rating systems 

  43. Khan 2003 Systematic reviews to support evidence-based medicine: how to review and apply findings of healthcare research 

  44. Conserv Biol Pullin 20 1647 2006 10.1111/j.1523-1739.2006.00485.x Guidelines for systematic review in conservation and environmental management 

  45. Energy Convers Manag Zain-Ahmed 43 13 1725 2002 10.1016/S0196-8904(01)00007-3 Daylighting as a passive solar design strategy in tropical buildings: a case study of Malaysia 

  46. Energy Build Franzetti 36 117 2004 10.1016/j.enbuild.2003.10.005 Influence of the coupling between daylight and artificial lighting on thermal loads in office buildings 

  47. Energy Build Treado 6 319 1984 10.1016/0378-7788(84)90015-X Daylighting with windows, skylights, and clerestories 

  48. Build Environ Ochoa 41 1128 2006 10.1016/j.buildenv.2005.05.001 Evaluating visual comfort and performance of three natural lighting systems for deep office buildings in highly luminous climates 

  49. Sol Energy Edmonds 73 111 2002 10.1016/S0038-092X(02)00039-7 Daylighting in the tropics 

  50. Build Environ Sanati 64 67 2013 10.1016/j.buildenv.2013.02.013 The effect of window shading design on occupant use of blinds and electric lighting 

  51. Sol Energy Freewan 82 343 2008 10.1016/j.solener.2007.08.003 Optimizing performance of the lightshelf by modifying ceiling geometry in highly luminous climates 

  52. Energy Convers Manag Freewan 51 1600 2010 10.1016/j.enconman.2009.09.037 Maximizing the lightshelf performance by interaction between lightshelf geometries and a curved ceiling 

  53. Renew Energy Al-Sallal 32 1033 2007 10.1016/j.renene.2006.08.010 Testing glare in universal space design studios in Al-Ain, UAE desert climate and proposed Improvements 

  54. Renew Energy Soler 8 198 1996 10.1016/0960-1481(96)88845-8 Dependence on solar elevation of the performance of a lightshelf as a potential daylighting device 

  55. Build Environ Soler 32 87 1997 10.1016/S0360-1323(96)00047-9 Lightshelf performance in Madrid, Spain 

  56. Teehnik am Bau Daniels 3 291 1977 Tageslichtdurchflutung durch Sonnenschutz 

  57. Sol Energy Critten 41 6 583 1988 10.1016/0038-092X(88)90061-8 Light enhancement using E-W aligned long prismatic arrays at high latitude 

  58. Sol Energy Kurata 46 1 55 1991 10.1016/0038-092X(91)90106-7 Scale-model experiments of applying a Fresnel prism to greenhouse covering 

  59. URL: 〈http://www.solartran.com.au/lasercutpanel.htm〉. 

  60. Sol Energy Lorenz 70 2 109 2001 10.1016/S0038-092X(00)00132-8 A glazing unit for solar control, daylighting and energy conservation 

  61. Sol Energy Christoffers 57 5 339 1996 10.1016/S0038-092X(96)00112-0 Seasonal shading of vertical south-facades with prismatic panes 

  62. HVAC&R Res Laouadi 19 63 2013 Optical model for prismatic glazing (1415-RP) 

  63. Energy Build Shehabi 66 415 2013 10.1016/j.enbuild.2013.07.013 U.S. energy savings potential from dynamic daylighting control glazings 

  64. Sol Energy Mater Sol Cells Edmonds 29 1 1993 10.1016/0927-0248(93)90088-K Performance of laser cut light deflecting panels in daylighting applications 

  65. Wagner D. Holographic optical elements (HOE) for high efficiency illumination, solar control and photovoltaic power buildings, acronym high efficiency hoes summary (Public); April 2004. 

  66. Sol Energy Breitenbach 68 5 427 2000 10.1016/S0038-092X(00)00011-6 Goniospectrometer measurements of the optical performance of a holographic optical element 

  67. Renew Energy HFO 5 Part II 935 1994 Application of holographic optical elements in buildings for various purposes like daylighting, solar shading and photovoltaic power generation 

  68. Sol Energy James 78 441 2005 10.1016/j.solener.2004.05.022 Holographic optical elements: various principles for solar control of conservatories and sunrooms 

  69. 10.1117/12.185391 Tholl HD, Kubiza R, Stojanoff CG Stacked volume holograms a light directing element. In: Proceedings of SPIE 2255, optical materials technology for energy efficiency and solar energy conversion XIII, vol. 486; 1994. p. 486-96. doi:10.1117/12.185391. 

  70. Klammt S, Muller H, Neyer A. Advanced daylighting using micro-structured components. In: Proceedings of PLDC, TU Dortmund: Berlin; 27-31.10.2009. 

  71. Sol Energy Wittkopf 81 151 2007 10.1016/j.solener.2006.04.002 Daylight performance of anidolic ceiling under different sky conditions 

  72. Sol Energy Linhart 84 1085 2010 10.1016/j.solener.2010.01.014 Performance of Anidolic Daylighting Systems in tropical climates - parametric studies for identification of main influencing factors 

  73. Energy Build Wittkopf 38 1120 2006 10.1016/j.enbuild.2006.01.005 Prediction of energy savings with anidolic integrated ceiling across different daylight climates 

  74. Energy Build Cowrret 28 79 1998 10.1016/S0378-7788(97)00066-2 Design and assessment of an anidolic light-duct 

  75. Sol Energy Scartezzini 73 2 123 2002 10.1016/S0038-092X(02)00040-3 Anidolic daylighting systems 

  76. Sol Energy Linhart 84 587 2010 10.1016/j.solener.2009.05.001 Minimizing lighting power density in office rooms equipped with Anidolic Daylighting Systems 

  77. Energy Build Vazquez-Molini 67 525 2013 10.1016/j.enbuild.2013.08.040 Horizontal daylighting system for office buildings 

  78. Sol Energy Tzempelikos 82 1172 2008 10.1016/j.solener.2008.05.014 The impact of venetian blind geometry and tilt angle on view, direct light transmission and interior illuminance 

  79. Aleo F, Sciuto S, Viadana R. Solar transmission measurements in outdoor conditions of non-homogeneous shading devices. In: Proceedings of the European conference on energy performance and indoor climate in buildings. Lyon: France; 1994. p.1074-79. 

  80. Tzempelikos A, Athienitis AK. Modeling and evaluation of a window with integrated motorized venetian blinds. In: Proceedings of 3rd ISES World Congress. Gotenburg, Sweden; 2003. 

  81. ASHRAE Trans Klems 101 1 791 1995 Measurement of bi-directional optical properties of complex shading devices 

  82. ASHVE Trans Parmelee 58 377 1952 The shading of sunlit glass 

  83. Sol Energy Pfrommer 57 2 77 1996 10.1016/S0038-092X(96)00063-1 Solar radiation transport through slat-type blinds: a new model and its application for thermal simulation of buildings 

  84. Energy Build Kuhn 38 648 2006 10.1016/j.enbuild.2005.10.002 Solar control: a general evaluation method for facades with venetian blinds or other solar control systems 

  85. Build Environ Simmler 43 2 197 2008 10.1016/j.buildenv.2006.10.011 Experimental and numerical determination of the total solar energy transmittance of glazing with venetian blind shading 

  86. Sol Energy Rosenfeld 69 6-Suppl. S1 2000 Modeling the optical and thermal properties of complex glazing: overview of recent developments 

  87. ASHRAE Trans Yahoda 110 1 463 2004 Methods for calculating the effective long-wave radiative properties of a venetian blind layer 

  88. Kotey NA, Wright JL. Simplified solar optical calculations for windows with venetian blinds. In: Proceedings of the 31st conference of the Solar Energy Society of Canada Inc. (SESCI) and 1st Solar Buildings Conference (SBRN). Montreal, Quebec, Canada; 2006. 

  89. Sol Energy Andersen 78 2 187 2005 10.1016/j.solener.2004.06.005 Bidirectional transmission properties of venetian blinds: experimental assessment compared to ray-tracing calculations 

  90. Energy Build Reinhart 33 683 2001 10.1016/S0378-7788(01)00058-5 Validation of dynamic radiance based simulations for a test office with external blinds 

  91. Campbell NS, Whittle JK. Analyzing radiation transport through complex fenestration systems. In: Proceedings of 5th IBPSA conference. Prague, Czech Republic; 1997. p. 173-80. 

  92. Energy Build Hammad 42 1888 2010 10.1016/j.enbuild.2010.05.024 The energy savings potential of using dynamic external louvers in an office building 

  93. Energy Build Saelens 60 286 2013 10.1016/j.enbuild.2012.10.056 Assessment of approaches for modeling louver shading devices in building energy simulation programs 

  94. Energy Build Oh 55 728 2012 10.1016/j.enbuild.2012.09.019 Automated control strategies of inside slat-type blind considering visual comfort and building energy performance 

  95. Build Environ Shen 78 155 2014 10.1016/j.buildenv.2014.04.028 Energy and visual comfort analysis of lighting and daylight control strategies 

  96. Build Environ Koo 45 1508 2010 10.1016/j.buildenv.2009.12.014 Automated blind control to maximize the benefits of daylight in buildings 

  97. Appl Energy Palmero-Marrero 87 2040 2010 10.1016/j.apenergy.2009.11.020 Effect of louver shading devices on building energy requirements 

  98. Sol Energy Leung 94 253 2013 10.1016/j.solener.2013.05.004 Performance of a daylight guiding system in an office building 

  99. Renew Energy Datta 23 497 2001 10.1016/S0960-1481(00)00131-2 Effect of fixed horizontal louver shading devices on thermal performance of building by TRNSYS simulation 

  100. Sol Energy Athienitis 72 4 271 2002 10.1016/S0038-092X(02)00016-6 A methodology for simulation of daylight room illuminance distribution and light dimming for a room with a controlled shading device 

  101. Ruck 2000 Daylight in buildings: a source book on daylighting systems and components: a Report of IEA SHC Task 21/ECBCS Annex 29 

  102. Build Environ Kim 44 1517 2009 10.1016/j.buildenv.2008.08.006 An experimental study on the environmental performance of the automated blind in summer 

  103. Sol Energy Kuhn 69 59 2001 10.1016/S0038-092X(01)00017-2 Evaluation of overheating protection with sunshading systems 

  104. Energy Build Lee 29 47 1998 10.1016/S0378-7788(98)00035-8 Thermal and daylighting performance of an automated Venetian blind and lighting system in a full-scale private office 

  105. Selkowitz S, Lee ES. Advanced fenestration systems for improved daylight performance. Daylighting’ 98 Conference Proceedings. Ontario, Canada; 1998. 

  106. Sol Energy Chan 98 241 2013 10.1016/j.solener.2013.10.005 Efficient venetian blind control strategies considering daylight utilization and glare protection 

  107. Energy Build Guillemin 33 477 2001 10.1016/S0378-7788(00)00100-6 An innovative lighting controller integrated in a selfadaptive building control system 

  108. Selkowitz S, Lee E. Integrating automated shading and smart glazings with daylight controls. International Symposium on Daylighting Buildings (IEA SHC TASK 31); 2004. 

  109. Illuminating Engineering Society of North America (IESNA). Recommended practice of daylighting. New York: IESNA Rp-5-99; 1999. 

  110. Build Environ Koo 45 1508 2010 10.1016/j.buildenv.2009.12.014 Automated blind control to maximize the benefits of daylight in buildings 

  111. ASHRAE Trans Inoue 94 1034 1988 The development of an optimal control system for window shading devices based on investigations in office buildings 

  112. Energy Convers Manag Chaiwiwatworakul 50 2927 2009 10.1016/j.enconman.2009.07.008 Application of automated blind for daylighting in tropical region 

  113. J Illum Eng Soc DiBartolomeo 26 146 1997 10.1080/00994480.1997.10748175 Developing a dynamic envelope: lighting control system with field measurements 

  114. ASHRAE Trans Klems 103 1026 1997 Solar heat gain coefficient of complex fenestrations with a Venetian blind for differing slat tilt angles 

  115. Energy Build Roisin 40 514 2008 10.1016/j.enbuild.2007.04.006 Lighting energy savings in offices using different control systems and their real consumption 

  116. Sol Energy Galasiu 76 523 2004 10.1016/j.solener.2003.12.007 Impact of window blinds on daylight-linked dimming and automatic on/off lighting controls 

  117. Energy Build Lee 29 47 1998 10.1016/S0378-7788(98)00035-8 Thermal and daylighting performance of an automated Venetian blind and lighting system in a full-scale private office 

  118. Sol Energy Galasiu 76 523 2004 10.1016/j.solener.2003.12.007 Impact of window blinds on daylightlinked dimming and automatic on/off lighting controls 

  119. Build Environ Kim 44 1517 2009 10.1016/j.buildenv.2008.08.006 An experimental study on the environmental performance of the automated blind in summer 

  120. Renew Energy Garcia-Hansen 26 91 2002 10.1016/S0960-1481(01)00089-1 Passive solar systems for heating, daylighting and ventilation for rooms without an equatorfacing facade 

  121. Light Res Technol Shao 30 1 1998 10.1177/096032719803000106 Mirror lightpipes: daylighting performance in real buildings 

  122. Light Res Technol Edmonds 27 1 27 1995 10.1177/14771535950270010101 Daylight enhancement with light pipes coupled to laser-cut light deflecting materials 

  123. Renew Energy Tsangrassoulis 28 2157 2003 10.1016/S0960-1481(03)00078-8 Comparison of radiosity and ray-tracing techniques with a practical design procedure for the prediction of daylight levels in atria 

  124. Sol Energy Greenup 76 99 2004 10.1016/j.solener.2003.08.018 Test room measurements and computer simulations of the micro-light guiding shade daylight redirecting device 

  125. Autom Constr Henriques 28 91 2012 10.1016/j.autcon.2012.06.002 Strategies to control daylight in a responsive skylight system 

  126. Energy Build Acosta 60 232 2013 10.1016/j.enbuild.2013.01.006 Daylighting design with lightscoop skylights: towards an optimization of shape under overcast sky conditions 

  127. Front Archit Res Al-Obaidi 3 178 2014 10.1016/j.foar.2014.03.004 A study of the impact of environmental loads that penetrate a passive skylight roofing system in Malaysian buildings 

  128. Hopkinson 1966 Daylighting 

  129. Energy Build Tsangrassoulis 32 1 41 2000 10.1016/S0378-7788(99)00039-0 A method to estimate the daylight efficiency of round skylights 

  130. Appl Energy Chel 86 2507 2009 10.1016/j.apenergy.2009.03.004 A model for estimation of daylight factor for skylight: an experimental validation using pyramid shape skylight over vault roof mud-house in New Delhi (India) 

  131. Sol Energy Heras 78 85 2005 10.1016/j.solener.2004.05.019 Energetic analysis of a passive solar design, incorporated in a courtyard after refurbishment, using an innovative cover component based in a sawtooth roof concept 

  132. Sol Energy Chirarattananon 69 4 331 2000 10.1016/S0038-092X(00)00081-5 Daylighting through light pipes in the tropics 

  133. Optik Darula 124 3165 2013 10.1016/j.ijleo.2012.09.052 Hollow light guide efficiency and illuminance distribution on the light-tube base under overcast and clear sky conditions 

  134. Sol Energy Kocifaj 86 2753 2012 10.1016/j.solener.2012.06.017 Availability of luminous flux below a bended light-pipe: design modelling under optimal daylight conditions 

  135. Appl Energy Wong 90 225 2012 10.1016/j.apenergy.2011.03.018 Introducing natural lighting into the enclosed lift lobbies of highrise buildings by remote source lighting system 

  136. Energy Build Gorgulu 61 172 2013 10.1016/j.enbuild.2013.02.037 Energy saving in lighting system with fuzzy logic controller which uses light-pipe and dimmable ballast 

  137. Appl Energy Jenkins 79 77 2004 10.1016/j.apenergy.2003.11.003 Light-pipe prediction methods 

  138. Build Environ Jenkins 38 965 2003 10.1016/S0360-1323(03)00061-1 Modelling light-pipe performances - a natural daylighting solution 

  139. Energy Convers Manag Jenkins 46 2288 2005 10.1016/j.enconman.2004.10.018 Formulation of semi-empirical models for predicting the illuminance of light pipes 

  140. Energy Build Jenkins 37 485 2005 10.1016/j.enbuild.2004.09.014 A design tool for predicting the performances of light pipes 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로