$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers 원문보기

Scientific reports, v.4, 2014년, pp.6492 -   

Zang, Jianfeng (School of Optical and Electronic Information, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China) ,  Cao, Changyong (Department of Mechanical Engineering and Materials Science, Duke University , Durham, NC 27708, USA) ,  Feng, Yaying (Department of Mechanical Engineering and Materials Science, Duke University , Durham, NC 27708, USA) ,  Liu, Jie (Department of Chemistry, Duke University , Durham, NC 27708, USA) ,  Zhao, Xuanhe (Department of Mechanical Engineering and Materials Science, Duke University , Durham, NC 27708, USA)

Abstract AI-Helper 아이콘AI-Helper

Fabrication of unconventional energy storage devices with high stretchability and performance is challenging, but critical to practical operations of fully power-independent stretchable electronics. While supercapacitors represent a promising candidate for unconventional energy-storage devices, exis...

참고문헌 (40)

  1. Wagner S. & Bauer S. Materials for stretchable electronics . Mrs Bull. 37 , 207 – 217 ( 2012 ). 

  2. Lipomi D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes . Nat. Nanotechnol. 6 , 788 – 792 ( 2011 ). 22020121 

  3. Rogers J. A. , Someya T. & Huang Y. Materials and Mechanics for Stretchable Electronics . Science 327 , 1603 – 1607 ( 2010 ). 20339064 

  4. Kaltenbrunner M. et al. Ultrathin and lightweight organic solar cells with high flexibility . Nat. Commun. 3 , 770 ( 2012 ). 22473014 

  5. Khang D.-Y. , Jiang H. , Huang Y. & Rogers J. A. A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates . Science 311 , 208 – 212 ( 2006 ). 16357225 

  6. Keplinger C. et al. Stretchable, transparent, ionic conductors . Science 341 , 984 – 987 ( 2013 ). 23990555 

  7. Kim D.-H. et al. Epidermal Electronics . Science 333 , 838 – 843 ( 2011 ). 21836009 

  8. Lipomi D. J. , Tee B. C. K. , Vosgueritchian M. & Bao Z. Stretchable organic solar cells . Adv. Mater. 23 , 1771 – 1775 ( 2011 ). 21491510 

  9. Kim D.-H. et al. Stretchable and foldable silicon integrated circuits . Science 320 , 507 – 511 ( 2008 ). 18369106 

  10. Xiao L. et al. Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers . Nano Lett. 8 , 4539 – 4545 ( 2008 ). 19367976 

  11. Mannsfeld S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers . Nat. Mater. 9 , 859 – 864 ( 2010 ). 20835231 

  12. Lee S.-K. et al. Stretchable graphene transistors with printed dielectrics and gate electrodes . Nano lett. 11 , 4642 – 4646 ( 2011 ). 21973013 

  13. Fu C. C. et al. Tunable Nanowrinkles on Shape Memory Polymer Sheets . Adv. Mater. 21 , 4472 – 4476 ( 2009 ). 

  14. Xu S. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems . Nat. Commun. 4 , 1543 ( 2013 ). 23443571 

  15. Song Z. et al. Origami lithium-ion batteries . Nat. Commun. 5 , 3140 ( 2014 ). 24469233 

  16. Li X. , Gu T. & Wei B. Dynamic and Galvanic Stability of Stretchable Supercapacitors . Nano Lett. 12 , 6366 – 6371 ( 2012 ). 23167804 

  17. Hu L. et al. Stretchable, Porous, and Conductive Energy Textiles . Nano Lett. 10 , 708 – 714 ( 2010 ). 20050691 

  18. Yang Z. , Deng J. , Chen X. , Ren J. & Peng H. A Highly Stretchable, Fiber-Shaped Supercapacitor . Angew. Chem. Int. Ed. 52 , 13453 – 13457 ( 2013 ). 

  19. Pushparaj V. L. et al. Flexible energy storage devices based on nanocomposite paper . Proc. Natl. Acad. Sci. U.S.A. 104 , 13574 – 13577 ( 2007 ). 17699622 

  20. Zhu Y. et al. Carbon-Based Supercapacitors Produced by Activation of Graphene . Science 332 , 1537 – 1541 ( 2011 ). 21566159 

  21. Stankovich S. et al. Graphene-based composite materials . Nature 442 , 282 – 286 ( 2006 ). 16855586 

  22. Liu C. , Yu Z. , Neff D. , Zhamu A. & Jang B. Z. Graphene-based supercapacitor with an ultrahigh energy density . Nano lett. 10 , 4863 – 4868 ( 2010 ). 21058713 

  23. Miller J. R. , Outlaw R. A. & Holloway B. C. Graphene Double-Layer Capacitor with ac Line-Filtering Performance . Science 329 , 1637 – 1639 ( 2010 ). 20929845 

  24. Yang X. , Zhu J. , Qiu L. & Li D. Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next Generation of High-Performance Supercapacitors . Adv. Mater. 23 , 2833 – 2838 ( 2011 ). 21557338 

  25. Yang X. , Cheng C. , Wang Y. , Qiu L. & Li D. Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage . Science 341 , 534 – 537 ( 2013 ). 23908233 

  26. El-Kady M. F. , Strong V. , Dubin S. & Kaner R. B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors . Science 335 , 1326 – 1330 ( 2012 ). 22422977 

  27. Dikin D. A. et al. Preparation and characterization of graphene oxide paper . Nature 448 , 457 – 460 ( 2007 ). 17653188 

  28. Zang J. et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene . Nat. Mater. 12 , 321 – 325 ( 2013 ). 23334002 

  29. Cao C. , Chan H. F. , Zang J. , Leong K. W. & Zhao X. Harnessing Localized Ridges for High-Aspect-Ratio Hierarchical Patterns with Dynamic Tunability and Multifunctionality . Adv. Mater. 26 , 1763 – 1770 ( 2014 ). 24339233 

  30. Zang J. , Zhao X. , Cao Y. & Hutchinson J. W. Localized ridge wrinkling of stiff films on compliant substrates . J. Mech. Phys. Solids 60 , 1265 – 1279 ( 2012 ). 

  31. Shyer A. E. et al. Villification: How the gut gets its villi . Science 342 , 212 – 218 ( 2013 ). 23989955 

  32. Niu Z. et al. Highly Stretchable, Integrated Supercapacitors Based on Single-Walled Carbon Nanotube Films with Continuous Reticulate Architecture . Adv. Mater. 25 , 1058 – 1064 ( 2013 ). 23255187 

  33. Pech D. et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon . Nat. Nanotechnol. 5 , 651 – 654 ( 2010 ). 20711179 

  34. Shi Y. et al. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes . J. Mater. Chem. A 2 , 6086 – 6091 ( 2014 ). 

  35. Bao L. , Zang J. & Li X. Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes . Nano Lett. 11 , 1215 – 1220 ( 2011 ). 21306113 

  36. Sun J.-Y. et al. Highly stretchable and tough hydrogels . Nature 489 , 133 – 136 ( 2012 ). 22955625 

  37. Wu Q. , Sun Y. , Bai H. & Shi G. High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties . Phys. Chem. Chem. Phys. 13 , 11193 – 11198 ( 2011 ). 21562653 

  38. Stoller M. D. , Park S. , Zhu Y. , An J. & Ruoff R. S. Graphene-based ultracapacitors . Nano lett. 8 , 3498 – 3502 ( 2008 ). 18788793 

  39. Zhao C. , Wang C. , Yue Z. , Shu K. & Wallace G. G. Intrinsically Stretchable Supercapacitors Composed of Polypyrrole Electrodes and Highly Stretchable Gel Electrolyte . ACS Appl. Mater. Interfaces 5 , 9008 – 9014 ( 2013 ). 23947753 

  40. Yu C. , Masarapu C. , Rong J. , Wei B. & Jiang H. Stretchable Supercapacitors Based on Buckled Single-Walled Carbon-Nanotube Macrofilms . Adv. Mater. 21 , 4793 – 4797 ( 2009 ). 21049496 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로