$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Scaling and design of landslide and debris-flow experiments

Geomorphology, v.244, 2015년, pp.9 - 20  

Iverson, R.M.

Abstract AI-Helper 아이콘AI-Helper

Scaling plays a crucial role in designing experiments aimed at understanding the behavior of landslides, debris flows, and other geomorphic phenomena involving grain-fluid mixtures. Scaling can be addressed by using dimensional analysis or - more rigorously - by normalizing differential equations th...

Keyword

참고문헌 (64)

  1. J. Fluid Mech. Armanini 532 269 2005 10.1017/S0022112005004283 Rheological stratification in experimental free-surface flows of granular-liquid mixtures 

  2. Proc. R. Soc. London, Ser. A Bagnold 225 49 1954 10.1098/rspa.1954.0186 Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear 

  3. Baker 57 1996 The scientific nature of geomorphology Hypotheses and geomorphological reasoning 

  4. Bird 1960 Transport phenomena 

  5. Phys. Today Bolster 64 42 2011 10.1063/PT.3.1258 Dynamic similarity, the dimensionless science 

  6. Can. Geotech. J. Bowman 49 460 2012 10.1139/t2012-007 Physical models of rock avalanche spreading behaviour with dynamic fragmentation 

  7. Phys. Rev. Lett. Boyer 107 188301 2011 10.1103/PhysRevLett.107.188301 Unifying suspension and granular rheology 

  8. Bridgman 1922 Dimensional analysis 

  9. Phys. Rev. Buckingham 4 345 1914 10.1103/PhysRev.4.345 On physically similar systems; illustrations of the use of dimensional equations 

  10. Trans. Am. Soc. Mech. Eng. Buckingham 37 263 1915 10.1115/1.4059754 Model experiments and the forms of empirical equations 

  11. Landslides Bugnion 9 179 2012 10.1007/s10346-011-0294-4 Measurements of hillslope debris flow impact pressure on obstacles 

  12. Phys. Fluids Cassar 17 103301 2005 10.1063/1.2069864 Submarine granular flows down inclined planes 

  13. Geology Dade 26 803 1998 10.1130/0091-7613(1998)026<0803:LRR>2.3.CO;2 Long runout rockfalls 

  14. Phys. Rev. Lett. Deboeuf 102 108031 2009 10.1103/PhysRevLett.102.108301 Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy 

  15. Science Densmore 275 369 1997 10.1126/science.275.5298.369 Hillslope evolution by bedrock landslides 

  16. Geotechnique Eckersley 40 489 1990 10.1680/geot.1990.40.3.489 Instrumented laboratory flowslides 

  17. Annu. Rev. Fluid Mech. Forterre 40 1 2008 10.1146/annurev.fluid.40.111406.102142 Flows of dense granular media 

  18. Proc. R. Soc. London, Ser. A George 470 2014 A depth-averaged debris-flow model that includes the effects of evolving dilatancy: 2. numerical predictions and experimental tests 

  19. Gilbert 1914 U.S. Geological Survey Professional Paper 86 The transportation of debris by running water 

  20. Annu. Rev. Fluid Mech. Goldhirsch 35 267 2003 10.1146/annurev.fluid.35.101101.161114 Rapid granular flows 

  21. Z. Dtsch. Geol. Ges. Heim 34 74 1882 Der bergsturz von Elm 

  22. Hsü 71 1978 Rockslides and avalanches, 1, natural phenomena Albert Heim: observations on landslides and relevance to modern interpretations 

  23. J. Geophys. Res. Earth Surf. Hsu 119 2014 Mean and fluctuating basal forces generated by granular flows: Laboratory observations in a large vertically rotating drum 

  24. J. Fluid Mech. Hunt 452 1 2002 10.1017/S0022112001006577 Revisiting the 1954 suspension experiments of R.A. Bagnold 

  25. Rev. Geophys. Iverson 35 245 1997 10.1029/97RG00426 The physics of debris flows 

  26. Iverson 83 2003 Prediction in Geomorphology, Geophys. Monograph 135 How should mathematical models of geomorphic processes be judged? 

  27. Iverson v. 1 303 2003 The debris-flow rheology myth 

  28. J. Geophys. Res. Iverson 110 (F02015) 2005 10.1029/2004JF000268 Regulation of landslide motion by dilatancy and pore pressure feedback 

  29. J. Geophys. Res. Iverson 117 (F03006) 2012 10.1029/2011JF002189 Elementary theory of bed-sediment entrainment by debris flows and avalanches 

  30. J. Geophys. Res. Iverson 106 537 2001 10.1029/2000JB900329 Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory 

  31. Proc. R. Soc. London, Ser. A Iverson 470 2014 A depth-averaged debris-flow model that includes the effects of evolving dilatancy: 1. physical basis 

  32. Science Iverson 246 796 1989 10.1126/science.246.4931.796 Dynamic pore-pressure fluctuations in rapidly shearing granular materials 

  33. Rev. Geophys. Iverson 53 2015 10.1002/2013RG000447 Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory 

  34. Annu. Rev. Earth Planet. Sci. Iverson 25 85 1997 10.1146/annurev.earth.25.1.85 Debris-flow mobilization from landslides 

  35. Science Iverson 290 513 2000 10.1126/science.290.5491.513 Acute sensitivity of landslide rates to initial soil porosity 

  36. J. Geophys. Res. Iverson 109 F01015 2004 10.1029/2003JF000084 Granular avalanches across irregular three-dimensional terrain: 2. experimental tests 

  37. J. Geophys. Res. Iverson 115 F03005 2010 10.1029/2009JF001514 The perfect debris flow: aggregated results from 28 large-scale experiments 

  38. Nat. Geosci. Iverson 4 116 2011 10.1038/ngeo1040 Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment 

  39. J. Fluid Mech. Kaitna 741 377 2014 10.1017/jfm.2013.675 Surface slopes, velocity profiles and fluid pressure in coarse-grained debris flows saturated with water and mud 

  40. Eng. Geol. Legros 63 301 2002 10.1016/S0013-7952(01)00090-4 The mobility of long-runout landslides 

  41. Logan v. 1.3 2007 Video documentation of experiments at the USGS debris-flow flume 1992-2006 (amended to include 2007-2013) 

  42. J. Geophys. Res. Mangeney 115 F03040 2010 10.1029/2009JF001462 Erosion and mobility in granular collapse over sloping beds 

  43. Eng. Geol. Manzella 109 146 2009 10.1016/j.enggeo.2008.11.006 Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches 

  44. Eur. Phys. J. E MiDi 14 341 2004 10.1140/epje/i2003-10153-0 On dense granular flows 

  45. Water Resour. Res. Montgomery 33 91 1997 10.1029/96WR02985 Piezometric response of a steep unchanneled valley to natural and applied rainfall 

  46. J. Geophys. Res. Montgomery 114 F01031 2009 10.1029/2008JF001078 Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability 

  47. Landslides Moriwaki 1 277 2004 10.1007/s10346-004-0034-0 Failure processes in a full-scale landslide experiment using a rainfall simulator 

  48. Landslides Ochiai 1 211 2004 10.1007/s10346-004-0030-4 A fluidized landslide on a natural slope by artificial rainfall 

  49. Ochiai 209 2007 Progress in landslide science Landslide experiments on artificial and natural slopes 

  50. Eng. Geol. Okura 109-124 2000 The effects of rockfall volume on runout distance 

  51. Landslides Paguican 11 67 2014 10.1007/s10346-012-0368-y Hummocks: how they form and how they evolve in rockslide-debris avalanches 

  52. Paik 2012 Video presentation at 2012 Fall Meeting of the American Geophysical Union, San Francisco Real scale field experiment of debris flow for investigating its deposition and entrainment 

  53. J. Geol. Parsons 109 427 2001 10.1086/320798 Experimental study of the grain-flow, fluid-mud transition in debris flows 

  54. Pudasaini 2007 Avalanche dynamics 

  55. Phys. Fluids Raju 7 1241 1995 10.1063/1.868581 The accumulation and dispersion of heavy particles in forced two-dimensional mixing layers. Part 2: the effect of gravity 

  56. Reid 1 1997 Debris-flow hazards mitigation: mechanics, prediction, and assessment Debris-flow initiation experiments with diverse hydrologic triggers 

  57. Rev. Geophys. Rice 14 227 1976 10.1029/RG014i002p00227 Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents 

  58. Rickenmann v. 2 883 2003 Erosion by debris flows in field and laboratory experiments 

  59. J. Geophys. Res. Roche 115 B09206 2010 10.1029/2009JB007133 Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: Insights into the emplacement dynamics of pyroclastic flows 

  60. Adv. Appl. Mech. Savage 24 289 1984 10.1016/S0065-2156(08)70047-4 The mechanics of rapid granular flows 

  61. J. Fluid Mech. Savage 199 177 1989 10.1017/S0022112089000340 The motion of a finite mass of granular material down a rough incline 

  62. SIAM J. Appl. Math. Schaeffer 69 769 2008 10.1137/07070704X Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback 

  63. Geol. Soc. Am. Spec. Pap. Shreve 108 1968 The Blackhawk landslide 

  64. Springman 1698 2009 17th International Conference on Soil Mechanics & Geotechnical Engineering Landslide triggering experiment in a steep forested slope in Switzerland 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로