$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Highly Sensitive Electrochemical Biosensor for Evaluation of Oxidative Stress Based on the Nanointerface of Graphene Nanocomposites Blended with Gold, Fe3O4, and Platinum Nanoparticles

ACS applied materials & interfaces, v.7 no.33, 2015년, pp.18441 - 18449  

Wang, Le ,  Zhang, Yuanyuan ,  Cheng, Chuansheng ,  Liu, Xiaoli ,  Jiang, Hui ,  Wang, Xuemei

Abstract AI-Helper 아이콘AI-Helper

High levels of H2O2 pertain to high oxidative stress and are associated with cancer, autoimmune, and neurodegenerative disease, and other related diseases. In this study, a sensitive H2O2 biosensor for evaluation of oxidative stress was fabricated on the basis of the reduced graphene oxide (RGO) nan...

주제어

참고문헌 (37)

  1. Zhang, Yan, Wu, Congyu, Zhou, Xuejiao, Wu, Xiaochen, Yang, Yongqiang, Wu, Haixia, Guo, Shouwu, Zhang, Jingyan. Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale, vol.5, no.5, 1816-.

  2. Chang, Hucheng, Wang, Xuemei, Shiu, Kowk-Keung, Zhu, Yanliang, Wang, Jianling, Li, Qiwei, Chen, Baoan, Jiang, Hui. Layer-by-layer assembly of graphene, Au and poly(toluidine blue O) films sensor for evaluation of oxidative stress of tumor cells elicited by hydrogen peroxide. Biosensors & bioelectronics, vol.41, 789-794.

  3. Sanford, Audrey L., Morton, Stephen W., Whitehouse, Kelsey L., Oara, Hannah M., Lugo-Morales, Leyda Z., Roberts, James G., Sombers, Leslie A.. Voltammetric Detection of Hydrogen Peroxide at Carbon Fiber Microelectrodes. Analytical chemistry, vol.82, no.12, 5205-5210.

  4. Zhang, Yuanyuan, Bai, Xiaoyun, Wang, Xuemei, Shiu, Kwok-Keung, Zhu, Yanliang, Jiang, Hui. Highly Sensitive Graphene–Pt Nanocomposites Amperometric Biosensor and Its Application in Living Cell H2O2 Detection. Analytical chemistry, vol.86, no.19, 9459-9465.

  5. Khodade, Vinayak S., Sharath Chandra, Mallojjala, Banerjee, Ankita, Lahiri, Surobhi, Pulipeta, Mallikarjuna, Rangarajan, Radha, Chakrapani, Harinath. Bioreductively Activated Reactive Oxygen Species (ROS) Generators as MRSA Inhibitors. ACS medicinal chemistry letters, vol.5, no.7, 777-781.

  6. 10.2174/15734137113099990084 

  7. Borgmann, Sabine. Electrochemical quantification of reactive oxygen and nitrogen: challenges and opportunities. Analytical and bioanalytical chemistry, vol.394, no.1, 95-105.

  8. Wen, Fang, Dong, Yanhua, Feng, Lu, Wang, Song, Zhang, Sichun, Zhang, Xinrong. Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing. Analytical chemistry, vol.83, no.4, 1193-1196.

  9. Wang, K., Liu, Q., Wu, X.Y., Guan, Q.M., Li, H.N.. Graphene enhanced electrochemiluminescence of CdS nanocrystal for H22sensing. Talanta, vol.82, no.1, 372-376.

  10. Gimeno, P., Bousquet, C., Lassu, N., Maggio, A.F., Civade, C., Brenier, C., Lempereur, L.. High-performance liquid chromatography method for the determination of hydrogen peroxide present or released in teeth bleaching kits and hair cosmetic products. Journal of pharmaceutical and biomedical analysis, vol.107, 386-393.

  11. Hua, M.Y., Chen, H.C., Chuang, C.K., Tsai, R.Y., Jeng, J.L., Yang, H.W., Chern, Y.T.. The intrinsic redox reactions of polyamic acid derivatives and their application in hydrogen peroxide sensor. Biomaterials, vol.32, no.21, 4885-4895.

  12. Li, Jianping, Li, Yuping, Zhang, Yun, Wei, Ge. Highly Sensitive MolecularlyImprinted ElectrochemicalSensor Based on the Double Amplification by an Inorganic PrussianBlue Catalytic Polymer and the Enzymatic Effect of Glucose Oxidase. Analytical chemistry, vol.84, no.4, 1888-1893.

  13. Chakraborty, S., Retna Raj, C.. Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2. Biosensors & bioelectronics, vol.24, no.11, 3264-3268.

  14. Liu, X., Feng, H., Zhang, J., Zhao, R., Liu, X., Wong, D.K.Y.. Hydrogen peroxide detection at a horseradish peroxidase biosensor with a Au nanoparticle-dotted titanate nanotube|hydrophobic ionic liquid scaffold. Biosensors & bioelectronics, vol.32, no.1, 188-194.

  15. Wang, Hongwei, Lang, Qiaolin, Li, Liang, Liang, Bo, Tang, Xiangjiang, Kong, Lingrang, Mascini, Marco, Liu, Aihua. Yeast Surface Displaying Glucose Oxidase as Whole-Cell Biocatalyst: Construction, Characterization, and Its Electrochemical Glucose Sensing Application. Analytical chemistry, vol.85, no.12, 6107-6112.

  16. Baj-Rossi, C., Rezzonico Jost, T., Cavallini, A., Grassi, F., De Micheli, G., Carrara, S.. Continuous monitoring of Naproxen by a cytochrome P450-based electrochemical sensor. Biosensors & bioelectronics, vol.53, 283-287.

  17. Hu, Jianqiang, Yu, Ying, Guo, Huan, Chen, Zhiwu, Li, Aiqing, Feng, Xiumei, Xi, Baomin, Hu, Guanqi. Sol–gel hydrothermal synthesis and enhanced biosensing properties of nanoplated lanthanum-substituted bismuth titanate microspheres. Journal of materials chemistry, vol.21, no.14, 5352-5359.

  18. d-Glucose, d-Galactose, and d-Lactose non-enzyme quantitative and qualitative analysis method based on Cu foam electrode. Food chemistry, vol.175, 485-493.

  19. Liu, Z., Zhao, B., Shi, Y., Guo, C., Yang, H., Li, Z.. Novel nonenzymatic hydrogen peroxide sensor based on iron oxide–silver hybrid submicrospheres. Talanta, vol.81, no.4, 1650-1654.

  20. Yan, Xingbin, Chen, Jiangtao, Yang, Jie, Xue, Qunji, Miele, Philippe. Fabrication of Free-Standing, Electrochemically Active, and Biocompatible Graphene Oxide−Polyaniline and Graphene−Polyaniline Hybrid Papers. ACS applied materials & interfaces, vol.2, no.9, 2521-2529.

  21. Wang, Y., Li, Y., Tang, L., Lu, J., Li, J.. Application of graphene-modified electrode for selective detection of dopamine. Electrochemistry communications, vol.11, no.4, 889-892.

  22. Bai, Xiaoyun, Chen, Guihua, Shiu, Kwok-Keung. Electrochemical biosensor based on reduced graphene oxide modified electrode with Prussian blue and poly(toluidine blue O) coating. Electrochimica acta, vol.89, 454-460.

  23. Gong, Heqing, Sun, Muhua, Fan, Runhua, Qian, Lei. One-step preparation of a composite consisting of graphene oxide, Prussian blue and chitosan for electrochemical sensing of hydrogen peroxide. Microchimica acta, vol.180, no.3, 295-301.

  24. Zhou, Ming, Zhai, Yueming, Dong, Shaojun. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Analytical chemistry, vol.81, no.14, 5603-5613.

  25. Wu, Ping, Cai, Zhewei, Gao, Yang, Zhang, Hui, Cai, Chenxin. Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells. Chemical communications : Chem comm, vol.47, no.40, 11327-11329.

  26. Pagliari, Francesca, Mandoli, Corrado, Forte, Giancarlo, Magnani, Eugenio, Pagliari, Stefania, Nardone, Giorgia, Licoccia, Silvia, Minieri, Marilena, Di Nardo, Paolo, Traversa, Enrico. Cerium Oxide Nanoparticles Protect Cardiac Progenitor Cells from Oxidative Stress. ACS nano, vol.6, no.5, 3767-3775.

  27. Pumera, Martin. Graphene-based nanomaterials and their electrochemistry. Chemical Society reviews, vol.39, no.11, 4146-4157.

  28. Haruta, Masatake. Catalysis of Gold Nanoparticles Deposited on Metal Oxides. CATTECH : the magazine of catalysis sciences, technology, and innovation, vol.6, no.3, 102-115.

  29. Chen, M. S., Goodman, D. W.. The Structure of Catalytically Active Gold on Titania. Science, vol.306, no.5694, 252-255.

  30. Liu, Zhi-Pan, Gong, Xue-Qing, Kohanoff, Jorge, Sanchez, Cristián, Hu, P.. Catalytic Role of Metal Oxides in Gold-Based Catalysts: A First Principles Study of CO Oxidation on $ \mathrm{T}\mathrm{i}\mathrm{O}_{2}$ Supported Au. Physical review letters, vol.91, no.26, 266102-.

  31. Lee, Youngmin, Garcia, Miguel Angel, Frey Huls, Natalie A., Sun, Shouheng. Synthetic Tuning of the Catalytic Properties of Au-Fe3O4 Nanoparticles. Angewandte Chemie, vol.122, no.7, 1293-1296.

  32. Molina, L. M., Hammer, B.. Active Role of Oxide Support during CO Oxidation at $ \mathrm{A}\mathrm{u}/\mathrm{M}\mathrm{g}\mathrm{O}$. Physical review letters, vol.90, no.20, 206102-.

  33. Xu, F., Sun, Y., Zhang, Y., Shi, Y., Wen, Z., Li, Z.. Graphene-Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochemistry communications, vol.13, no.10, 1131-1134.

  34. Chu, X., Duan, D., Shen, G., Yu, R.. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta, vol.71, no.5, 2040-2047.

  35. Bienert, Gerd P., Schjoerring, Jan K., Jahn, Thomas P.. Membrane transport of hydrogen peroxide. Biochimica et biophysica acta, Biomembranes, vol.1758, no.8, 994-1003.

  36. Bienert, Gerd P., Møller, Anders L.B., Kristiansen, Kim A., Schulz, Alexander, Møller, Ian M., Schjoerring, Jan K., Jahn, Thomas P.. Specific Aquaporins Facilitate the Diffusion of Hydrogen Peroxide across Membranes. The Journal of biological chemistry, vol.282, no.2, 1183-1192.

  37. Halliwell, Barry, Clement, Marie Veronique, Ramalingam, Jejakumar, Long, Lee Hua. Hydrogen Peroxide. Ubiquitous in Cell Culture and In vivo?. IUBMB life, vol.50, no.4, 251-257.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로