$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Efficient production of free fatty acids from soybean meal carbohydrates

Biotechnology and bioengineering, v.112 no.11, 2015년, pp.2324 - 2333  

Wang, Dan (Department of Bioengineering, Rice University, 6100 Main Street, MS‐) ,  Thakker, Chandresh (362, Houston, Texas, 77005‐) ,  Liu, Ping (1892) ,  Bennett, George N. (Department of BioSciences, Rice University, Houston, Texas) ,  San, Ka‐Yiu (Department of Bioengineering, Rice University, 6100 Main Street, MS‐)

Abstract AI-Helper 아이콘AI-Helper

ABSTRACTConversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble car...

주제어

참고문헌 (46)

  1. Andersson C , Hodge D , Berglund KA , Rova U . 2007 . Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli . Biotechnol Progr 23 : 381 – 388 . 

  2. Balzer G , Thakker C , Bennett GN , San KY . 2013 . Metabolic engineering Escherichia coli to minimize byproduct formate and improving succinate productivity through NADH availability by heterologous expression of NAD(+)‐dependent formate dehydrogenase . Metab Eng 20 : 1 – 8 . 

  3. Cao Y , Yang J , Xian M , Xu X , Liu W . 2010 . Increasing unsaturated fatty acid contents in Escherichia coli by coexpression of three different genes . Appl Microbiol Biotechnol 87 : 271 – 280 . 

  4. Cho H , Cronan J , Jr. 1995 . Defective export of a periplasmic enzyme disrupts regulation of fatty acid synthesis . J Biol Chem 270 : 4216 – 4219 . 

  5. Datsenko KA , Wanner BL . 2000 . One‐step inactivation of chromosomal genes in Escherichia coli K‐12 using PCR products . Proc Nat Acad Sci 97 : 6640 – 6645 . 

  6. Dellomonaco C , Clomburg JM , Miller EN , Gonzalez R . 2011 . Engineering reversal of the β‐oxidation cycle for the synthesis of fuels and chemicals . Nature 476 : 355 – 359 . 

  7. Dien BS , Nichols NN , Bothast RJ . 2002 . Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L‐lactate acid . J Ind Microbiol Biotechnol 29 : 221 – 227 . 

  8. Eldridge AC , Black LT , Wolf JW . 1979 . Carbohydrate composition of soybean flours, protein concentrates, and isolates . J Agric Food Chem 27 : 799 – 802 . 

  9. Feng Y , Cronan JE . 2011 . Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters . Mol Microbiol 80 : 195 – 218 . 

  10. Fridjonssson O , Watzlawick H , Gehweiler A , Rohrhirsch T , Mattes R . 1999 . Cloning of the gene encoding a novel thermostable galactosidase from Thermus brockianus I TI360 . Appl Environ Microbiol 65 : 3955 – 3963 . 

  11. Giannoccaro E , Wang YJ , Chen P . 2006 . Effects of solvent, temperature, time, solvent‐to‐sample ratio, sample size, and defatting on the extraction of soluble sugars in soybean . J Food Sci 71 : C59 – C64 . 

  12. Janßen HJ , Steinbüchel A . 2014 . Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels . Biotechnol Biofuels 7 : 7 – 33 . 

  13. Jiang P , Cronan J , Jr. 1994 . Inhibition of fatty acid synthesis in Escherichia coli in the absence of phospholipid synthesis and release of inhibition by thioesterase action . J Bacteriol 176 : 2814 – 2821 . 

  14. Jönsson L , Alriksson B , Nilvebrant N . 2013 . Bioconversion of lignocelluloses: Inhibitors and detoxification . Biotechnol Biofuels 6 : 16 – 25 . 

  15. Karr‐Lilienthal LK , Grieshop CM , Spears JK , Fahey GC . 2005 . Amino acid, carbohydrate, and fat composition of soybean meals prepared at 55 commercial U.S. soybean processing plants . J Agric Food Chem 53 : 2146 – 2150 . 

  16. Kim JH , Block DE , Mills DA . 2010 . Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass . Appl Microbiol Biotechnol 88 : 1077 – 1085 . 

  17. Kim KR , Oh DK . 2013 . Production of hydroxyl fatty acids by microbial fatty acid‐hydroxylation enzymes . Biotechnol Adv 31 : 1473 – 1485 . 

  18. Kim NJ , Li H , Jung K , Chang HN , Lee PC . 2011 . Ethanol production from algal hydrolysates using Escherichia coli KO11 . Bioresour Technol 102 : 7466 – 7469 . 

  19. Lennen R , Braden G , West R , Dumesic J , Pfleger B . 2010 . A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes . Biotechnol Bioeng 106 : 193 – 202 . 

  20. Li M , Zhang X , Agrawal A , San K . 2012 . Effect of acetate formation pathway and long chain fatty acid CoA‐ligase on the free fatty acid production in E. coli expressing acyl‐ACP thioesterase from Ricinus communis . Metab Eng 14 : 380 – 387 . 

  21. Lin H , Bennett GN , San K . 2005 . Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield . Metab Eng 7 : 116 – 127 . 

  22. Liu K . 1997 . Soybeans: Chemistry, technology, and utilization . New York : Chapman and Hall . 

  23. Liu T , Vora H , Khosla C . 2010 . Quantitative analysis and engineering of fatty acid biosynthesis in E. coli . Metab Eng 12 : 378 – 386 . 

  24. Lu X , Vora H , Khosla C . 2008 . Overexpression of free fatty acids in E. coli : Implications for biodiesel production . Metab Eng 10 : 333 – 339 . 

  25. Mazumdar S , Bang J , Oh MK . 2013 . L ‐Lactate production from seaweed hydrolysate of Laminaria japonica using metabolically engineered Escherichia coli . Appl Biochem Biotechnol 172 : 1938 – 1952 . 

  26. McCue L , Thompson W , Carmack C , Ryan MP , Liu JS , Derbyshire V , Lawrence CE . 2001 . Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes . Nucleic Acids Res 29 : 774 – 782 . 

  27. Nickolau B , Perera M , Brachova L , Shanks B . 2008 . Platform chemicals for a biorenewable chemical industry . Plant J 54 : 536 – 545 . 

  28. O'Fallon JV , Busboom JR , Nelson ML , Gaskins CT . 2007 . A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs . J Anim Sci 85 : 1511 – 1521 . 

  29. Ooi S , Pee H . 1985 . Processing for industrial fatty acids‐II . J Am Oil Chem Soc 62 : 348 – 351 . 

  30. Peralta‐Yahya PB , Zhang F , del Cardayre SB , Keasling JD . 2012 . Microbial engineering for the production of advanced biofuels . Nature 488 : 320 – 328 . 

  31. San KY , Li M . 2013 . Bacteria and method for synthesizing fatty acids . Vol. WO/2013/059218, USA. 

  32. Sánchez AM , Bennett GN , San K . 2005 . Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity . Metab Eng 7 : 229 – 239 . 

  33. Schmid K , Schupfner M , Schmitt R . 1982 . Plasmid‐mediated uptake and metabolism of sucrose by Escherichia coli K‐12 . J Bacteriol 151 : 68 – 76 . 

  34. Schmid K , Schmitt R . 1976 . Raffinose metabolism in Escherichia coli K12. Purification and properties of a new a‐galactosidase specified by a transmissible plasmid . Eur. J Biochem 67 : 95 – 104 . 

  35. Shimizu K . 2013 . Metabolic regulation of a bacterial cell system with emphasis on Escherichia coli metabolism . ISRN Biochem 645983 : 1 – 47 . 

  36. Stephanopoulos G . 2007 . Challenges in engineering microbes for biofuels production . Science 315 : 801 – 804 . 

  37. Thakker C , San K , Bennett GN . 2013 . Production of succinic acid by engineered E. coli strains using soybean carbohydrates as feedstock under aerobic fermentation conditions . Bioresour Technol 130 : 398 – 405 . 

  38. Voelker T , Davies H . 1994 . Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of plant medium‐chain acyl‐acyl carrier protein thioesterase . J Bacteriol 176 : 7320 – 7327 . 

  39. Wang D , Li Q , Yang M , Zhang Y , Su Z , Xing J . 2011 . Efficient production of succinic acid from corn stalk hydrolysates by a recombinant Escherichia coli with ptsG mutation . Process Biochem 46 : 365 – 371 . 

  40. Wu H , San KY . 2014 . Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli . Biotechnol Bioeng 9999 : 1 – 11 . 

  41. Wu H , Lee J , Karanjikar M , San KY . 2014a . Efficient free fatty acid production from woody biomass hydrolysate using metabolically engineered Escherichia coli . Bioresour Technol 169 : 119 – 125 . 

  42. Wu H , Karanjikar M , San KY . 2014b . Metabolic engineering of Escherichia coli for efficient free fatty acid production from glycerol . Metab Eng 25 : 82 – 91 . 

  43. Zha Y , Muilwijk B , Coulier L , Punt PJ . 2012 . Inhibitory compounds in lignocellulosic biomass hydrolysates during hydrolysate fermentation process . J Bioprocess Biotechniq 2 : 1 – 11 . 

  44. Zhang XJ , Li M , Agrawal A , San KY . 2011 . Efficient free fatty acid production in Escherichia coli using plant acyl‐ACP thioesterase . Metab Eng 13 : 713 – 722 . 

  45. Zhang YM , Marrakchi H , Rock CO . 2002 . The FabR (YijC) transcription factor regulates unsaturated fatty acid biosynthesis in Escherichia coli . J Biol Chem 277 : 15558 – 15565 . 

  46. Zhang YM , Rock CO . 2009 . Transcriptional regulation in bacterial membrane lipid synthesis . J Lipid Res 50 : S115 – S119 . 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로