$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting

Carbon, v.95, 2015년, pp.545 - 551  

Li, W. ,  Liu, Y. ,  Wu, G.

Abstract AI-Helper 아이콘AI-Helper

High thermal conductive graphite flakes/Al composites were prepared by optimized squeeze casting technique with higher molten temperature and lower infiltration pressure. The characterization and thermal conductivity (TC) of graphite flakes/Al composites were investigated. The graphite flakes/Al com...

참고문헌 (43)

  1. Nat. Mater Balandin 10 8 569 2011 10.1038/nmat3064 Thermal properties of graphene and nanostructured carbon materials 

  2. Tong 1 2011 Advanced Materials for Thermal Management of Electronic Packaging 

  3. Carbon Yuan 50 175 2012 10.1016/j.carbon.2011.08.017 Graphite blocks with preferred orientation and high thermal conductivity 

  4. Carbon Liu 46 414 2008 10.1016/j.carbon.2007.11.050 Graphite blocks with high thermal conductivity derived from natural graphite flake 

  5. Electron Cool. Norley 7 50 2001 The role of natural graphite in electronics cooling 

  6. Carbon Liu 45 1914 2007 10.1016/j.carbon.2007.05.016 Preparation of doped graphite with high thermal conductivity by a liquid mixing process 

  7. Carbon Zhao 53 313 2013 10.1016/j.carbon.2012.11.013 Microstructure and thermal/mechanical properties of short carbon fiber-reinforced natural graphite flake composites with mesophase pitch as the binder 

  8. Carbon Zhou 50 5052 2012 10.1016/j.carbon.2012.06.045 Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite 

  9. Scr. Mater Prieto 59 1 11 2008 10.1016/j.scriptamat.2008.02.026 Fabrication and properties of graphite flakes/metal composites for thermal management applications 

  10. Mater Des. Zhou 63 719 2014 10.1016/j.matdes.2014.07.009 Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications 

  11. Compos. A Prieto 42 12 1970 2011 10.1016/j.compositesa.2011.08.022 Thermal conductivity of graphite flakes-SiC particles/metal composites 

  12. Carbon Zhao 51 427 2013 10.1016/j.carbon.2012.08.053 A sandwich structure graphite block with excellent thermal and mechanical properties reinforced by in-situ grown carbon nanotubes 

  13. Bokros vol. 5 97 1969 Deposition, structure and properties of pyrolytic carbon 

  14. Phys. Rev. Smith 104 4 885 1956 10.1103/PhysRev.104.885 Observed dependence of the low temperature thermal and electrical conductivity of graphite on temperature, type, neutron irradiation and bromination 

  15. Carbon Klemens 32 735 1994 10.1016/0008-6223(94)90096-5 Thermal conductivity of graphite in the basal plane 

  16. Carbon Murakami 30 255 1992 10.1016/0008-6223(92)90088-E High-quality and highly oriented graphite block from polycondensation polymer films 

  17. 2015 MMCC Metal Matrix Cast Composites 

  18. Scr. Mater Leng 59 6 619 2008 10.1016/j.scriptamat.2008.05.018 Mechanical properties of SiC/Gr/Al composites fabricated by squeeze casting technology 

  19. Kelly 521 2000 Comprehensive Composite Materials 

  20. Mater Sci. Eng. A Etter 386 61 2004 10.1016/S0921-5093(04)00915-3 Strength and fracture toughness of interpenetrating graphite/aluminium composites produced by the indirect squeeze casting process 

  21. Acta Mater Rodrıguez-Guerrero 54 1821 2006 10.1016/j.actamat.2005.11.041 Pressure infiltration of Al-12 wt.% Si-X (X = Cu, Ti, Mg) alloys into graphite particle performs 

  22. J. Mater Res. Johnson 8 05 1169 1993 10.1557/JMR.1993.1169 Diamond/Al metal matrix composites formed by the pressureless metal infiltration process 

  23. Carbon Bakshi 49 2 533 2011 10.1016/j.carbon.2010.09.054 An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites 

  24. Scr. Mater Geng 38 4 551 1998 10.1016/S1359-6462(97)00526-5 Fabrication of nanocrystalline ZrO2 particle reinforced aluminum alloy composite by squeeze casting route 

  25. Carbon Takahashi 2 423 1964 Correlation between stacking order and crystallite dimensions in carbons 

  26. Kelly 21 1981 Physics of Graphite 

  27. Polym. Adv. Technol. Chen 19 8 1113 2008 10.1002/pat.1093 Fabrication of highly ordered polymer/graphite flake composite with eminent anisotropic electrical property 

  28. Carbon Yuan 68 426 2014 10.1016/j.carbon.2013.11.019 The structure and properties of ribbon-shaped carbon fibers with high orientation 

  29. Mater Sci. Eng. A Etter 448 1 2007 10.1016/j.msea.2006.11.088 Aluminium carbide formation in interpenetrating graphite/aluminium composites 

  30. Key Eng. Mater Lin 104-107 507 1995 10.4028/www.scientific.net/KEM.104-107.507 Interface evolution in aluminum matrix composites during fabrication 

  31. Carbon Liu 50 1843 2012 10.1016/j.carbon.2011.12.034 Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing 

  32. Diam. Relat. Mater Khalid 13 3 393 2004 10.1016/j.diamond.2003.11.095 Microstructure and interfacial characteristics of aluminium-diamond composite materials 

  33. Acta Mater Cho 60 2 726 2012 10.1016/j.actamat.2011.09.056 On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube-copper matrix composite 

  34. Compos Sci. Technol. Okura 24 4 243 1985 10.1016/0266-3538(85)90024-7 Rate of formation of intermetallic compounds in aluminium matrix-carbon fibre composites 

  35. Scr. Mater Wang 66 594 2012 10.1016/j.scriptamat.2012.01.012 Reinforcement with graphene nanosheets in aluminum matrix composites 

  36. Mater Sci. Tech. Lond. Chu 21 7 91 2011 10.1179/026708309X12547309760768 Temperature dependence of thermal conductivity in SiCp based metal-matrix composites 

  37. Diam. Relat. Mater Battabyal 17 1438 2008 10.1016/j.diamond.2008.01.023 Heat transport across the metal-diamond interface 

  38. Appl. Phys. Lett. Majumdar 84 23 4768 2004 10.1063/1.1758301 Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces 

  39. J. Appl. Phys. Schmidt 107 104907 2010 10.1063/1.3428464 Thermal conductance and phonon transmissivity of metal-graphite interfaces 

  40. Carbon Luo 42 2887 2004 10.1016/j.carbon.2004.06.024 Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity 

  41. J. Nucl. Mater Garcia-Rosales 307-311 1282 2002 10.1016/S0022-3115(02)00960-1 Improvement of the thermo-mechanical properties of fine grain graphite by doping with different carbides 

  42. Pierson 40 1993 Handbook of Carbon, Graphite, Diamond and Fullerenes 

  43. Phys. Rev. B Huberman 50 2865 1994 10.1103/PhysRevB.50.2865 Electronic Kapitza conductance at a diamond-Pb interface 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로