$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

tRNA gene diversity in the three domains of life 원문보기

Frontiers in genetics, v.5, 2014년, pp.142 -   

Fujishima, Kosuke (NASA Ames Research Center) ,  Kanai, Akio (Institute for Advanced Biosciences, Keio University)

Abstract AI-Helper 아이콘AI-Helper

Transfer RNA (tRNA) is widely known for its key role in decoding mRNA into protein. Despite their necessity and relatively short nucleotide sequences, a large diversity of gene structures and RNA secondary structures of pre-tRNAs and mature tRNAs have recently been discovered in the three domains of...

주제어

참고문헌 (81)

  1. Abelson J. Trotta C. R. Li H. ( 1998 ). tRNA splicing . J. Biol. Chem . 273 , 12685 – 12688 10.1074/jbc.273.21.12685 9582290 

  2. Andersen G. R. Thirup S. Spremulli L. L. Nyborg J. ( 2000 ). High resolution crystal structure of bovine mitochondrial EF-tu in complex with GDP . J. Mol. Biol . 297 , 421 – 436 10.1006/jmbi.2000.3564 10715211 

  3. Arita M. Suematsu T. Osanai A. Inaba T. Kamiya H. Kita K. ( 2006 ). An evolutionary ‘intermediate state’ of mitochondrial translation systems found in Trichinella species of parasitic nematodes: co-evolution of tRNA and EF-Tu . Nucleic Acids Res . 34 , 5291 – 5299 10.1093/nar/gkl526 17012285 

  4. Boore J. L. ( 1999 ). Animal mitochondrial genomes . Nucleic Acids Res . 27 , 1767 – 1780 10.1093/nar/27.8.1767 10101183 

  5. Brennan T. Sundaralingam M. ( 1976 ). Structure, of transfer RNA molecules containing the long variable loop . Nucleic Acids Res . 3 , 3235 – 3252 10.1093/nar/3.11.3235 794835 

  6. Calvin K. Li H. ( 2008 ). RNA-splicing endonuclease structure and function . Cell. Mol. Life Sci . 65 , 1176 – 1185 10.1007/s00018-008-7393-y 18217203 

  7. Chan P. P. Cozen A. E. Lowe T. M. ( 2011 ). Discovery of permuted and recently split transfer RNAs in Archaea . Genome Biol . 12 : R38 10.1186/gb-2011-12-4-r38 21489296 

  8. Cox C. J. Foster P. G. Hirt R. P. Harris S. R. Embley T. M. ( 2008 ). The archaebacterial origin of eukaryotes . Proc. Natl. Acad. Sci. U.S.A . 105 , 20356 – 20361 10.1073/pnas.0810647105 19073919 

  9. Di Giulio M. ( 2006 ). The non-monophyletic origin of the tRNA molecule and the origin of genes only after the evolutionary stage of the last universal common ancestor (LUCA) . J. Theor. Biol . 240 , 343 – 352 10.1016/j.jtbi.2005.09.023 16289209 

  10. Di Giulio M. ( 2009 ). Formal proof that the split genes of tRNAs of Nanoarchaeum equitans are an ancestral character . J. Mol. Evol . 69 , 505 – 511 10.1007/s00239-009-9280-z 19760446 

  11. Di Giulio M. ( 2012 ). The ‘recently’ split transfer RNA genes may be close to merging the two halves of the tRNA rather than having just separated them . J. Theor. Biol . 310 , 1 – 2 10.1016/j.jtbi.2012.06.022 22749890 

  12. Dreher T. W. ( 2009 ). Role of tRNA-like structures in controlling plant virus replication . Virus Res . 139 , 217 – 229 10.1016/j.virusres.2008.06.010 18638511 

  13. Dreher T. W. ( 2010 ). Viral tRNAs and tRNA-like structures . Wiley Interdiscip. Rev. RNA 1 , 402 – 414 10.1002/wrna.42 21956939 

  14. Francklyn C. Schimmel P. ( 1989 ). Aminoacylation of RNA minihelices with alanine . Nature 337 , 478 – 481 10.1038/337478a0 2915692 

  15. Francklyn C. Schimmel P. ( 1990 ). Enzymatic aminoacylation of an eight-base-pair microhelix with histidine . Proc. Natl. Acad. Sci. U.S.A . 87 , 8655 – 8659 10.1073/pnas.87.21.8655 2236077 

  16. Fujishima K. Sugahara J. Kikuta K. Hirano R. Sato A. Tomita M. ( 2009 ). Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea . Proc. Natl. Acad. Sci. U.S.A . 106 , 2683 – 2687 10.1073/pnas.0808246106 19190180 

  17. Fujishima K. Sugahara J. Miller C. S. Baker B. J. Di Giulio M. Takesue K. ( 2011 ). A novel three-unit tRNA splicing endonuclease found in ultrasmall Archaea possesses broad substrate specificity . Nucleic Acids Res . 39 , 9695 – 9704 10.1093/nar/gkr692 21880595 

  18. Fujishima K. Sugahara J. Tomita M. Kanai A. ( 2008 ). Sequence evidence in the archaeal genomes that tRNAs emerged through the combination of ancestral genes as 5′ and 3′ tRNA halves . PLoS ONE 3 : e1622 10.1371/journal.pone.0001622 18286179 

  19. Fujishima K. Sugahara J. Tomita M. Kanai A. ( 2010 ). Large-scale tRNA intron transposition in the archaeal order Thermoproteales represents a novel mechanism of intron gain . Mol. Biol. Evol . 27 , 2233 – 2243 10.1093/molbev/msq111 20430862 

  20. Gray M. W. ( 2012 ). Mitochondrial evolution . Cold Spring Harb. Perspect. Biol . 4 : a011403 10.1101/cshperspect.a011403 22952398 

  21. Hamashima K. Fujishima K. Masuda T. Sugahara J. Tomita M. Kanai A. ( 2012 ). Nematode-specific tRNAs that decode an alternative genetic code for leucine . Nucleic Acids Res . 40 , 3653 – 3662 10.1093/nar/gkr1226 22187151 

  22. Hamashima K. Kanai A. ( 2013 ). Alternative genetic code for amino acids and transfer RNA revisited . Biomol. Concepts . 4 , 309 – 318 10.1515/bmc-2013-0002 

  23. Haugen P. Simon D. M. Bhattacharya D. ( 2005 ). The natural history of group I introns . Trends Genet . 21 , 111 – 119 10.1016/j.tig.2004.12.007 15661357 

  24. Hirata A. Fujishima K. Yamagami R. Kawamura T. Banfield J. F. Kanai A. ( 2012 ). X-ray structure of the fourth type of archaeal tRNA splicing endonuclease: insights into the evolution of a novel three-unit composition and a unique loop involved in broad substrate specificity . Nucleic Acids Res . 40 , 10554 – 10566 10.1093/nar/gks826 22941657 

  25. Hori Y. Baba H. Ueda R. Tanaka T. Kikuchi Y. ( 2000 ). In vitro hyperprocessing of Drosophila tRNAs by the catalytic RNA of RNase P the cloverleaf structure of tRNA is not always stable? Eur. J. Biochem . 267 , 4781 – 4788 10.1046/j.1432-1327.2000.01534.x 10903512 

  26. Jühling F. Mörl M. Hartmann R. K. Sprinzl M. Stadler P. F. Pütz J. ( 2009 ). tRNAdb 2009: compilation of tRNA sequences and tRNA genes . Nucleic Acids Res . 37 , D159 – D162 10.1093/nar/gkn772 18957446 

  27. Kanai A. ( 2013 ). Molecular evolution of disrupted transfer rna genes and their introns in archaea , in Evolutionary Biology: Exobiology and Evolutionary Mechanisms , ed Pontarotti P. ( Berlin, Heidelberg : Springer ), 181 – 193 

  28. Knight R. D. Freeland S. J. Landweber L. F. ( 2001 ). Rewiring the keyboard: evolvability of the genetic code . Nat. Rev. Genet . 2 , 49 – 58 10.1038/35047500 11253070 

  29. Lee N. Bessho Y. Wei K. Szostak J. W. Suga H. ( 2000 ). Ribozyme-catalyzed tRNA aminoacylation . Nat. Struct. Biol . 7 , 28 – 33 10.1038/71225 10625423 

  30. Le Grice S. F.J. ( 2003 ). ‘In the Beginning’: initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons . Biochemistry 42 , 14349 – 14355 10.1021/bi030201q 14661945 

  31. Li H. Abelson J. ( 2000 ). Crystal structure of a dimeric archaeal splicing endonuclease . J. Mol. Biol . 302 , 639 – 648 10.1006/jmbi.2000.3941 10986124 

  32. Li H. Trotta C. R. Abelson J. ( 1998 ). Crystal structure and evolution of a transfer RNA splicing enzyme . Science 280 , 279 – 284 10.1126/science.280.5361.279 9535656 

  33. Lowe T. M. Eddy S. R. ( 1997 ). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence . Nucleic Acids Res . 25 , 955 – 964 10.1093/nar/25.5.0955 9023104 

  34. Marck C. Grosjean H. ( 2003 ). Identification of BHB splicing motifs in intron-containing tRNAs from 18 archaea: evolutionary implications . RNA 9 , 1516 – 1531 10.1261/rna.5132503 14624007 

  35. Maruyama S. Sugahara J. Kanai A. Nozaki H. ( 2010 ). Permuted tRNA genes in the nuclear and nucleomorph genomes of photosynthetic eukaryotes . Mol. Biol. Evol . 27 , 1070 – 1076 10.1093/molbev/msp313 20022888 

  36. Masta S. E. Boore J. L. ( 2008 ). Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes . Mol. Biol. Evol . 25 , 949 – 959 10.1093/molbev/msn051 18296699 

  37. Ohtsuki T. Kawai G. Watanabe K. ( 2002 ). The minimal tRNA: unique structure of Ascaris suum mitochondrial tRNA(Ser)(UCU) having a short T arm and lacking the entire D arm . FEBS Lett . 514 , 37 – 43 10.1016/S0014-5793(02)02328-1 11904178 

  38. Ohtsuki T. Watanabe Y.-I. ( 2007 ). T-armless tRNAs and elongated elongation factor Tu . IUBMB Life 59 , 68 – 75 10.1080/15216540701218722 17454297 

  39. Okimoto R. Wolstenholme D. R. ( 1990 ). A set of tRNAs that lack either the T psi C arm or the dihydrouridine arm: towards a minimal tRNA adaptor . EMBO J . 9 , 3405 – 3411 2209550 

  40. Paecht-Horowitz M. Katchalsky A. ( 1973 ). Synthesis of amino acyl-adenylates under prebiotic conditions . J. Mol. Evol . 2 , 91 – 98 10.1007/BF01653989 4807193 

  41. Paquin B. Kathe S. D. Nierzwicki-Bauer S. A. Shub D. A. ( 1997 ). Origin and evolution of group I introns in cyanobacterial tRNA genes . J. Bacteriol . 179 , 6798 – 6806 9352932 

  42. Pleij C. W. Rietveld K. Bosch L. ( 1985 ). A new principle of RNA folding based on pseudoknotting . Nucleic Acids Res . 13 , 1717 – 1731 10.1093/nar/13.5.1717 4000943 

  43. Podar M. Makarova K. S. Graham D. E. Wolf Y. I. Koonin E. V. Reysenbach A.-L. ( 2013 ). Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park . Biol. Direct 8 : 9 10.1186/1745-6150-8-9 23607440 

  44. Randau L. Calvin K. Hall M. Yuan J. Podar M. Li H. ( 2005c ). The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves . Proc. Natl. Acad. Sci. U.S.A . 102 , 17934 – 17939 10.1073/pnas.0509197102 16330750 

  45. Randau L. Münch R. Hohn M. J. Jahn D. Söll D. ( 2005a ). Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5′- and 3′-halves . Nature 433 , 537 – 541 10.1038/nature03233 15690044 

  46. Randau L. Pearson M. Söll D. ( 2005b ). The complete set of tRNA species in Nanoarchaeum equitans . FEBS Lett . 579 , 2945 – 2947 10.1016/j.febslet.2005.04.051 15893316 

  47. Randau L. Söll D. ( 2008 ). Transfer RNA genes in pieces . EMBO Rep . 9 , 623 – 628 10.1038/embor.2008.101 18552771 

  48. Reinhold-Hurek B. Shub D. A. ( 1992 ). Self-splicing introns in tRNA genes of widely divergent bacteria . Nature 357 , 173 – 176 10.1038/357173a0 1579169 

  49. Reyes V. M. Abelson J. ( 1988 ). Substrate recognition and splice site determination in yeast tRNA splicing . Cell 55 , 719 – 730 10.1016/0092-8674(88)90230-9 3141064 

  50. Rogers H. H. Griffiths-Jones S. ( 2014 ). tRNA anticodon shifts in eukaryotic genomes . RNA 20 , 269 – 281 10.1261/rna.041681.113 24442610 

  51. Salinas T. Duby F. Larosa V. Coosemans N. Bonnefoy N. Motte P. ( 2012 ). Co-evolution of mitochondrial tRNA import and codon usage determines translational efficiency in the green alga chlamydomonas . PLoS Genet . 8 : e1002946 10.1371/journal.pgen.1002946 23028354 

  52. Schimmel P. Giegé R. Moras D. Yokoyama S. ( 1993 ). An operational RNA code for amino acids and possible relationship to genetic code . Proc. Natl. Acad. Sci. U.S.A . 90 , 8763 – 8768 10.1073/pnas.90.19.8763 7692438 

  53. Schimmel P. Ribas de Pouplana L. ( 1995 ). Transfer RNA: from minihelix to genetic code . Cell 81 , 983 – 986 10.1016/S0092-8674(05)80002-9 7600584 

  54. Soma A. Onodera A. Sugahara J. Kanai A. Yachie N. Tomita M. ( 2007 ). Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae . Science 318 , 450 – 453 10.1126/science.1145718 17947580 

  55. Soma A. Sugahara J. Onodera A. Yachie N. Kanai A. Watanabe S. ( 2013 ). Identification of highly-disrupted tRNA genes in nuclear genome of the red alga, Cyanidioschyzon merolae 10D . Sci. Rep . 3 : 2321 10.1038/srep02321 23900518 

  56. Song J. Markley J. L. ( 2007 ). Three-dimensional structure determined for a subunit of human tRNA splicing endonuclease (Sen15) reveals a novel dimeric fold . J. Mol. Biol . 366 , 155 – 164 10.1016/j.jmb.2006.11.024 17166513 

  57. Sugahara J. Fujishima K. Morita K. Tomita M. Kanai A. ( 2009 ). Disrupted tRNA gene diversity and possible evolutionary scenarios . J. Mol. Evol . 69 , 497 – 504 10.1007/s00239-009-9294-6 19826747 

  58. Sugahara J. Fujishima K. Nunoura T. Takaki Y. Takami H. Takai K. ( 2012 ). Genomic heterogeneity in a natural archaeal population suggests a model of tRNA gene disruption . PLoS ONE 7 : e32504 10.1371/journal.pone.0032504 22403667 

  59. Sugahara J. Kikuta K. Fujishima K. Yachie N. Tomita M. Kanai A. ( 2008 ). Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order thermoproteales . Mol. Biol. Evol . 25 , 2709 – 2716 10.1093/molbev/msn216 18832079 

  60. Sugahara J. Yachie N. Arakawa K. Tomita M. ( 2007 ). In silico screening of archaeal tRNA-encoding genes having multiple introns with bulge-helix-bulge splicing motifs . RNA 13 , 671 – 681 10.1261/rna.309507 17369313 

  61. Sugahara J. Yachie N. Sekine Y. Soma A. Matsui M. Tomita M. ( 2006 ). SPLITS: a new program for predicting split and intron-containing tRNA genes at the genome level . In Silico Biol. (Gedrukt) 6 , 411 – 418 17274770 

  62. Sun F.-J. Caetano-Anollés G. ( 2007 ). The origin and evolution of tRNA inferred from phylogenetic analysis of structure . J. Mol. Evol . 66 , 21 – 35 10.1007/s00239-007-9050-8 18058157 

  63. Tamura K. Schimmel P. ( 2004 ). Chiral-selective aminoacylation of an RNA minihelix . Science 305 , 1253 – 1253 10.1126/science.1099141 15333830 

  64. Tanaka T. Kikuchi Y. ( 2001 ). Origin of the cloverleaf shape of transfer RNA—the double-hairpin model: implication for the role of tRNA intron and the long extra loop . Viva Origino . 29 , 134 – 142 

  65. Tang T. H. Rozhdestvensky T. S. d'Orval B. C. Bortolin M.-L. Huber H. Charpentier B. ( 2002 ). RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing . Nucleic Acids Res . 30 , 921 – 930 10.1093/nar/30.4.921 11842103 

  66. Tanner M. Cech T. ( 1996 ). Activity and thermostability of the small self-splicing group I intron in the pre-tRNA(lle) of the purple bacterium Azoarcus . RNA 2 , 74 – 83 8846298 

  67. Thompson L. D. Daniels C. J. ( 1990 ). Recognition of exon-intron boundaries by the Halobacterium volcanii tRNA intron endonuclease . J. Biol. Chem . 265 , 18104 – 18111 1698785 

  68. Tocchini-Valentini G. Saks M. E. Abelson J. ( 2000 ). tRNA leucine identity and recognition sets . J. Mol. Biol . 298 , 779 – 793 10.1006/jmbi.2000.3694 10801348 

  69. Tocchini-Valentini G. D. Fruscoloni P. Tocchini-Valentini G. P. ( 2005a ). Coevolution of tRNA intron motifs and tRNA endonuclease architecture in Archaea . Proc. Natl. Acad. Sci. U.S.A . 102 , 15418 – 15422 10.1073/pnas.0506750102 16221764 

  70. Tocchini-Valentini G. D. Fruscoloni P. Tocchini-Valentini G. P. ( 2005b ). Structure, function, and evolution of the tRNA endonucleases of Archaea: an example of subfunctionalization . Proc. Natl. Acad. Sci. U.S.A . 102 , 8933 – 8938 10.1073/pnas.0502350102 15937113 

  71. Tocchini-Valentini G. D. Tocchini-Valentini G. P. ( 2012 ). Avatar pre-tRNAs help elucidate the properties of tRNA-splicing endonucleases that produce tRNA from permuted genes . Proc. Natl. Acad. Sci. U.S.A . 109 , 21325 – 21329 10.1073/pnas.1219336110 23236183 

  72. Trotta C. R. Miao F. Arn E. A. Stevens S. W. Ho C. K. Rauhut R. ( 1997 ). The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases . Cell 89 , 849 – 858 10.1016/S0092-8674(00)80270-6 9200603 

  73. Turk R. M. Chumachenko N. V. Yarus M. ( 2010 ). Multiple translational products from a five-nucleotide ribozyme . Proc. Natl. Acad. Sci. U.S.A . 107 , 4585 – 4589 10.1073/pnas.0912895107 20176971 

  74. Vogel J. Hess W. R. ( 2001 ). Complete 5′ and 3′ end maturation of group II intron-containing tRNA precursors . RNA 7 , 285 – 292 10.1017/S1355838201001960 11233985 

  75. Weiner A. M. Maizels N. ( 1999 ). The genomic tag hypothesis: modern viruses as molecular fossils of ancient strategies for genomic replication, and clues regarding the origin of protein synthesis . Biol. Bull . 196 , 327 10.2307/1542962 10390830 

  76. Widmann J. Giulio M. D. Yarus M. Knight R. ( 2005 ). tRNA creation by hairpin duplication . J. Mol. Evol . 61 , 524 – 530 10.1007/s00239-004-0315-1 16155749 

  77. Williams T. A. Foster P. G. Cox C. J. Embley T. M. ( 2013 ). An archaeal origin of eukaryotes supports only two primary domains of life . Nature 504 , 231 – 236 10.1038/nature12779 24336283 

  78. Wolf Y. I. Aravind L. Grishin N. V. Koonin E. V. ( 1999 ). Evolution of aminoacyl-tRNA synthetases—analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events . Genome Res . 9 , 689 – 710 10.1101/gr.9.8.689 10447505 

  79. Wuchty S. Fontana W. Hofacker I. L. Schuster P. ( 1999 ). Complete suboptimal folding of RNA and the stability of secondary structures . Biopolymers 49 , 145 – 165 10.1002/(SICI)1097-0282(199902)49:2 3.0.CO;2-G 10070264 

  80. Yokobori S.-I. Itoh T. Yoshinari S. Nomura N. Sako Y. Yamagishi A. ( 2009 ). Gain and loss of an intron in a protein-coding gene in Archaea: the case of an archaeal RNA pseudouridine synthase gene . BMC Evol. Biol . 9 : 198 10.1186/1471-2148-9-198 19671140 

  81. Yoshinari S. Shiba T. Inaoka D.-K. Itoh T. Kurisu G. Harada S. ( 2009 ). Functional importance of Crenarchaea-specific extra-loop revealed by an X-ray structure of a heterotetrameric crenarchaeal splicing endonuclease . Nucleic Acids Res . 37 , 4787 – 4798 10.1093/nar/gkp506 19515941 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로