$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Cell Proliferation-Inducing Protein 52/Mitofilin Is a Surface Antigen on Undifferentiated Human Dental Pulp Stem Cells

Stem cells and development, v.24 no.11, 2015년, pp.1309 - 1319  

Hwang, Hyo-In (Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea.) ,  Lee, Tae-Hyong (Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea.) ,  Jang, Young-Joo (Department of Nanobiomedical Science, BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea.)

Abstract AI-Helper 아이콘AI-Helper

Dental pulp is a soft tissue located inside the hard part of a tooth and it contains a stem cell population that can regenerate damaged dentin and/or pulp itself. Human dental pulp stem cells (hDPSCs) are multipotent adult stem cells that have the potential to be differentiated into a variety of cel...

참고문헌 (40)

  1. Abdallah, B M, Kassem, M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene therapy, vol.15, no.2, 109-116.

  2. Meirelles, Lindolfo da Silva, Chagastelles, Pedro Cesar, Nardi, Nance Beyer. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of cell science, vol.119, no.11, 2204-2213.

  3. Gronthos, S., Mankani, M., Brahim, J., Robey, P. Gehron, Shi, S.. Postnatal human dental pulp stem cells (DPSCs) in vitro and invivo. Proceedings of the National Academy of Sciences of the United States of America, vol.97, no.25, 13625-13630.

  4. Laino, Gregorio, Carinci, Francesco, Graziano, Antonio, d'Aquino, Riccardo, Lanza, Vladimiro, De Rosa, Alfredo, Gombos, Fernando, Caruso, Filippo, Guida, Luigi, Rullo, Rosario, Menditti, Dardo, Papaccio, Gianpaolo. In Vitro Bone Production Using Stem Cells Derived From Human Dental Pulp. The Journal of craniofacial surgery, vol.17, no.3, 511-515.

  5. Min, Jin-Hee, Ko, Seon-Yle, Cho, Yong-Bum, Ryu, Chun-Jeih, Jang, Young-Joo. Dentinogenic potential of human adult dental pulp cells during the extended primary culture. Human cell, vol.24, no.1, 43-50.

  6. Tandon, Shobha, Saha, Rooposhi, Rajendran, Ramesh, Nayak, Rashmi. Dental Pulp Stem Cells from Primary and Permanent Teeth: Quality Analysis. The Journal of clinical pediatric dentistry, vol.35, no.1, 53-58.

  7. Zhang, Weibo, Walboomers, X. Frank, Shi, Songtao, Fan, Mingwen, Jansen, John A.. Multilineage Differentiation Potential of Stem Cells Derived from Human Dental Pulp after Cryopreservation. Tissue engineering, vol.12, no.10, 2813-2823.

  8. Ferro, Federico, Spelat, Renza, D'Aurizio, Federica, Puppato, Elisa, Pandolfi, Maura, Beltrami, Antonio Paolo, Cesselli, Daniela, Falini, Giuseppe, Beltrami, Carlo Alberto, Curcio, Francesco. Dental Pulp Stem Cells Differentiation Reveals New Insights in Oct4A Dynamics. PloS one, vol.7, no.7, e41774-.

  9. Dominici, M, Le Blanc, K, Mueller, I, Slaper-Cortenbach, I, Marini, Fc, Krause, Ds, Deans, Rj, Keating, A, Prockop, Dj, Horwitz, Em. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy : official journal of the International Society for Hematotherapy and Graft Engineering, vol.8, no.4, 315-317.

  10. Prockop, Darwin J.. Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues. Science, vol.276, no.5309, 71-74.

  11. Dennis, James E., Carbillet, Jean-Pierre, Caplan, Arnold I., Charbord, Pierre. The STRO-1+ Marrow Cell Population Is Multipotential. Cells, tissues, organs, vol.170, no.2, 73-82.

  12. Lab Invest Encina NR 449 79 1999 

  13. Blood Gronthos S 4164 84 1994 10.1182/blood.V84.12.4164.bloodjournal84124164 

  14. Oyajobi, Babatunde O., Lomri, Abderrahim, Hott, Monique, Dr. Marie, Pierre J.. Isolation and Characterization of Human Clonogenic Osteoblast Progenitors Immunoselected from Fetal Bone Marrow Stroma Using STRO-1 Monoclonal Antibody. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, vol.14, no.3, 351-361.

  15. Karbanová, Jana, Soukup, Tomáš, Suchánek, Jakub, Pytlík, Robert, Corbeil, Denis, Mokrý, Jaroslav. Characterization of Dental Pulp Stem Cells from Impacted Third Molars Cultured in Low Serum-Containing Medium. Cells, tissues, organs, vol.193, no.6, 344-365.

  16. Liu, L., Wei, X., Ling, J., Wu, L., Xiao, Y.. Expression Pattern of Oct-4, Sox2, and c-Myc in the Primary Culture of Human Dental Pulp Derived Cells. Journal of endodontics, vol.37, no.4, 466-472.

  17. Morrison, Sean J., Spradling, Allan C.. Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life. Cell, vol.132, no.4, 598-611.

  18. Bavister, Barry D.. The mitochondrial contribution to stem cell biology. Reproduction, fertility, and development, vol.18, no.8, 829-.

  19. Nesti, Claudia, Pasquali, Livia, Vaglini, Francesca, Siciliano, Gabriele, Murri, Luigi. The Role of Mitochondria in Stem Cell Biology. Bioscience reports, vol.27, no.1, 165-171.

  20. Chen, Chien-Tsun, Hsu, Shu-Han, Wei, Yau-Huei. Upregulation of mitochondrial function and antioxidant defense in the differentiation of stem cells. Biochimica et biophysica acta, General subjects, vol.1800, no.3, 257-263.

  21. Kondoh, Hiroshi, Lleonart, Matilde E., Nakashima, Yasuhiro, Yokode, Masayuki, Tanaka, Makoto, Bernard, David, Gil, Jesus, Beach, David. A High Glycolytic Flux Supports the Proliferative Potential of Murine Embryonic Stem Cells. Antioxidants & redox signaling, vol.9, no.3, 293-299.

  22. Varum, S., Momcilovic, O., Castro, C., Ben-Yehudah, A., Ramalho-Santos, J., Navara, C.S.. Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem cell research, vol.3, no.2, 142-156.

  23. Schieke, Stefan M., Ma, Mingchao, Cao, Liu, McCoy Jr., J. Philip, Liu, Chengyu, Hensel, Nancy F., Barrett, A. John, Boehm, Manfred, Finkel, Toren. Mitochondrial Metabolism Modulates Differentiation and Teratoma Formation Capacity in Mouse Embryonic Stem Cells. The Journal of biological chemistry, vol.283, no.42, 28506-28512.

  24. Pattappa, Girish, Heywood, Hannah K., de Bruijn, Joost D., Lee, David A.. The metabolism of human mesenchymal stem cells during proliferation and differentiation. Journal of cellular physiology, vol.226, no.10, 2562-2570.

  25. Pietilä, Mika, Lehtonen, Siri, Närhi, Marko, Hassinen, Ilmo E., Leskelä, Hannu-Ville, Aranko, Kari, Nordström, Katrina, Vepsäläinen, Ari, Lehenkari, Petri. Mitochondrial Function Determines the Viability and Osteogenic Potency of Human Mesenchymal Stem Cells. Tissue engineering. Part C, Methods, vol.16, no.3, 435-445.

  26. Mandal, Sudip, Lindgren, Anne G., Srivastava, Anand S., Clark, Amander T., Banerjee, Utpal. Mitochondrial Function Controls Proliferation and Early Differentiation Potential of Embryonic Stem Cells. Stem cells®, vol.29, no.3, 486-495.

  27. Chen, C.T., Hsu, S.H., Wei, Y.H.. Mitochondrial bioenergetic function and metabolic plasticity in stem cell differentiation and cellular reprogramming. Biochimica et biophysica acta, General subjects, vol.1820, no.5, 571-576.

  28. Xu, X., Duan, S., Yi, F., Ocampo, A., Liu, G.H., Izpisua Belmonte, J.. Mitochondrial Regulation in Pluripotent Stem Cells. Cell metabolism, vol.18, no.3, 325-332.

  29. Paumard, Patrick, Vaillier, Jacques, Coulary, Bénédicte, Schaeffer, Jacques, Soubannier, Vincent, Mueller, David M., Brèthes, Daniel, di Rago, Jean‐Paul, Velours, Jean. The ATP synthase is involved in generating mitochondrial cristae morphology. The EMBO journal, vol.21, no.3, 221-230.

  30. Velours, J., Dautant, A., Salin, B., Sagot, I., Brethes, D.. Mitochondrial F1F0-ATP synthase and organellar internal architecture. The international journal of biochemistry & cell biology, vol.41, no.10, 1783-1789.

  31. Saddar, Sonika, Stuart, Rosemary A.. The Yeast F1F0-ATP Synthase. The Journal of biological chemistry, vol.280, no.26, 24435-24442.

  32. Arselin, Geneviève, Vaillier, Jacques, Salin, Bénédicte, Schaeffer, Jacques, Giraud, Marie-France, Dautant, Alain, Brèthes, Daniel, Velours, Jean. The Modulation in Subunits e and g Amounts of Yeast ATP Synthase Modifies Mitochondrial Cristae Morphology. The Journal of biological chemistry, vol.279, no.39, 40392-40399.

  33. Rabl, Regina, Soubannier, Vincent, Scholz, Roland, Vogel, Frank, Mendl, Nadine, Vasiljev-Neumeyer, Andreja, Körner, Christian, Jagasia, Ravi, Keil, Thomas, Baumeister, Wolfgang, Cyrklaff, Marek, Neupert, Walter, Reichert, Andreas S.. Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e / g. The Journal of cell biology, vol.185, no.6, 1047-1063.

  34. Gieffers, Christian, Korioth, Frank, Heimann, Peter, Ungermann, Christian, Frey, Jürgen. Mitofilin Is a Transmembrane Protein of the Inner Mitochondrial Membrane Expressed as Two Isoforms. Experimental cell research, vol.232, no.2, 395-399.

  35. Yu, Jinhua, He, Huixia, Tang, Chunbo, Zhang, Guangdong, Li, Yuanfei, Wang, Ruoning, Shi, Junnan, Jin, Yan. Differentiation potential of STRO-1 + dental pulp stem cells changes during cell passaging. Bmc cell biology, vol.11, 32-32.

  36. Laino, Gregorio, D'Aquino, Riccardo, Graziano, Antonio, Lanza, Vladimiro, Carinci, Francesco, Naro, Fabio, Pirozzi, Giuseppe, Papaccio, Gianpaolo. A New Population of Human Adult Dental Pulp Stem Cells: A Useful Source of Living Autologous Fibrous Bone Tissue (LAB). Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, vol.20, no.8, 1394-1402.

  37. Ma, Zhan, Cao, Manlin, Liu, Yiwen, He, Yiqing, Wang, Yingzhi, Yang, Cuixia, Wang, Wenjuan, Du, Yan, Zhou, Muqing, Gao, Feng. Mitochondrial F1Fo-ATP synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment. Acta biochimica et biophysica Sinica, vol.42, no.8, 530-537.

  38. Chi, Sulene L., Pizzo, Salvatore V.. Cell surface F1Fo ATP synthase: A new paradigm?. Annals of medicine, vol.38, no.6, 429-438.

  39. La Noce, M., Paino, F., Spina, A., Naddeo, P., Montella, R., Desiderio, V., De Rosa, A., Papaccio, G., Tirino, V., Laino, L.. Dental pulp stem cells: State of the art and suggestions for a true translation of research into therapy. Journal of dentistry, vol.42, no.7, 761-768.

  40. d'Aquino, R, Graziano, A, Sampaolesi, M, Laino, G, Pirozzi, G, De Rosa, A, Papaccio, G. Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell death and differentiation, vol.14, no.6, 1162-1171.

LOADING...

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로