$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The First Tandem, All-exciplex-based WOLED 원문보기

Scientific reports, v.4, 2014년, pp.5161 -   

Hung, Wen-Yi (Institute of Optoelectronic Sciences, National Taiwan Ocean University , Keelung, 20224, Taiwan) ,  Fang, Guan-Cheng (Institute of Optoelectronic Sciences, National Taiwan Ocean University , Keelung, 20224, Taiwan) ,  Lin, Shih-Wei (Department of Chemistry, National Taiwan University , Taipei, 10617, Taiwan) ,  Cheng, Shuo-Hsien (Department of Chemistry, National Taiwan University , Taipei, 10617, Taiwan) ,  Wong, Ken-Tsung (Department of Chemistry, National Taiwan University , Taipei, 10617, Taiwan) ,  Kuo, Ting-Yi (Department of Chemistry, National Taiwan University , Taipei, 10617, Taiwan) ,  Chou, Pi-Tai (Department of Chemistry, National Taiwan University , Taipei, 10617, Taiwan)

Abstract AI-Helper 아이콘AI-Helper

Exploiting our recently developed bilayer interface methodology, together with a new wide energy-gap, low LUMO acceptor (A) and the designated donor (D) layers, we succeeded in fabricating an exciplex-based organic light-emitting diode (OLED) systematically tuned from blue to red. Further optimizati...

참고문헌 (37)

  1. Kondakov D. Y. Characterization of triplet-triplet annihilation in organic light-emitting diodes based on anthracene derivatives . J. Appl. Phys. 102 , 114504 ( 2007 ). 

  2. Kondakov D. Y. , Pawlik T. D. , Hatwar T. K. & Spindler J. P. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes . J. Appl. Phys. 106 , 124510 ( 2009 ). 

  3. King S. M. et al. The contribution of triplet–triplet annihilation to the lifetime and efficiency of fluorescent polymer organic light emitting diodes . J. Appl. Phys. 109 , 074502 ( 2011 ). 

  4. Endo A. et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes . Appl. Phys. Lett. 98 , 083302 ( 2011 ). 

  5. Lee S. Y. , Yasuda T. , Nomura H. & Adachi C. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules . Appl. Phys. Lett. 101 , 093306 ( 2012 ). 

  6. Tanaka H. , Shizu K. , Miyazaki H. & Adachi C. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine–triphenyltriazine (PXZ–TRZ) derivative . Chem. Commun. 48 , 11392 – 11394 ( 2012 ). 

  7. Nakagawa T. , Ku S.-Y. , Wong K.-T. & Adachi C. Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor–acceptor structure . Chem. Commun. 48 , 9580 – 9582 ( 2012 ). 

  8. Zhang Q. et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes . J. Am. Chem. Soc. 134 , 14706 – 14709 ( 2012 ). 22931361 

  9. Uoyama H. et al. Highly efficient organic light-emitting diodes from delayed fluorescence . Nature 492 , 234 – 238 ( 2012 ). 23235877 

  10. Goushi K. , Yoshida K. , Sato K. & Adachi C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion . Nat. Photon. 6 , 253 – 258 ( 2012 ). 

  11. Goushi K. & Adachi C. Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes . Appl. Phys. Lett. 101 , 023306 ( 2012 ). 

  12. Hung W.-Y. et al. Highly efficient bilayer interface exciplex for yellow organic light-emitting diode . ACS Appl. Mater. Interfaces , 5 , 6826 – 6831 ( 2013 ). 23848982 

  13. Sun C. et al. A polyboryl-functionalized triazine as an electron transport material for OLEDs . Organometallics 30 , 5552 – 5555 ( 2011 ). 

  14. Su S.-J. et al. Tuning energy levels of electron-transport materials by nitrogen orientation for electrophosphorescent devices with an ‘ideal' operating voltage . Adv. Mater. 22 , 3311 – 3316 ( 2010 ). 20552601 

  15. Inomata H. et al. High-efficiency organic electrophosphorescent diodes using 1,3,5-triazine electron transport materials . Chem. Mater. 16 , 1285 – 1291 ( 2004 ). 

  16. Chen H.-F. et al. Peripheral modification of 1,3,5-triazine based electron-transporting host materials for sky blue, green, yellow, red, and white electrophosphorescent devices . J. Mater. Chem. 22 , 15620 – 15627 ( 2012 ). 

  17. Chang C.-H. et al. A dicarbazole–triazine hybrid bipolar host material for highly efficient green phosphorescent OLEDs . J. Mater. Chem. 22 , 3832 – 3838 ( 2012 ). 

  18. Chen H.-F. et al. 1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs . J. Mater. Chem. 19 , 8112 – 8118 ( 2009 ). 

  19. Zeng L. , Lee T. Y.-H. , Merkel P. B. & Chen S. H. A new class of non-conjugated bipolar hybrid hosts for phosphorescent organic light-emitting diodes . J. Mater. Chem. 19 , 8772 – 8781 ( 2009 ). 

  20. Han C. et al. Short-axis substitution approach selectively optimizes electrical properties of dibenzothiophene-based phosphine oxide hosts . J. Am. Chem. Soc. 134 , 19179 – 19188 ( 2012 ) 23106383 

  21. Jeon S. O. & Lee J. Y. Phosphine oxide derivatives for organic light emitting diodes . J. Mater. Chem. 22 , 4233 – 4243 ( 2012 ). 

  22. Chou H.-H. & Cheng C.-H. A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs . Adv. Mater. 22 , 2468 – 2471 ( 2010 ). 20446307 

  23. Palilis L. C. , Mäkinen A. J. , Uchida M. & Kafafi Z. H. Highly efficient molecular organic light-emitting diodes based on exciplex emission . Appl. Phys. Lett. 82 , 2209 ( 2003 ). 

  24. Hung W.-Y. et al. Employing ambipolar oligofluorene as the charge-generation layer in time-of-flight mobility measurements of organic thin films . Appl. Phys. Lett. 88 , 064102 ( 2006 ). 

  25. Holmes R. J. et al. Blue organic electrophosphorescence using exothermic host–guest energy transfer . Appl. Phys. Lett. 82 , 2422 – 2424 ( 2003 ). 

  26. Ikai M. et al. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer . Appl. Phys. Lett. 79 , 156 – 158 ( 2001 ). 

  27. Hung W.-Y. et al. A new benzimidazole/carbazole hybrid bipolar material for highly efficient deep-blue electrofluorescence, yellow–green electrophosphorescence, and two-color-based white OLEDs . J. Mater. Chem. 45 , 10113 – 10119 ( 2010 ). 

  28. Tang C. W. & VanSlyke S. A. Organic electroluminescent diodes . Appl. Phys. Lett. 51 , 913 ( 1987 ). 

  29. Adachi C. , Nagai K. & Tamoto N. Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes . Appl. Phys. Lett. 66 , 2679 – 2681 ( 1995 ). 

  30. Morteani A. C. et al. Barrier-free electron–hole capture in polymer blend heterojunction light-emitting diodes . Adv. Mater. 15 , 1708 – 1712 ( 2003 ). 

  31. Englman R. & Jortner J. The energy gap law for radiationless transitions in large molecules . J. Mol. Phys. 18 , 145 – 164 ( 1970 ). 

  32. Turro N. J. , Ramamurthy V. & Scaiano J. C. Modern Molecular Photochemistry of Organic Molecules. 195 – 197 (University Science Books, Sausalito, California, 2010 ). 

  33. Jankus V. , Chiang C.-J. , Dias F. & Monkman A. P. Deep blue exciplex organic light-emitting diodes with enhanced efficiency; P-type or E-type triplet conversion to singlet excitons? Adv. Mater. 25 , 1455 – 1459 ( 2013 ). 23281058 

  34. Zhu J. et al. Very broad white-emission spectrum based organic light-emitting diodes by four exciplex emission bands . Opt. Lett. 34 , 2946 – 2948 ( 2009 ). 19794777 

  35. Sasabe H. et al. Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40% . Org. Electron. 13 , 2615 – 2619 ( 2012 ). 

  36. Zhu H. et al. White organic light-emitting diodes via mixing exciplex and electroplex emissions . Synth. Met. 159 , 2458 – 2461 ( 2009 ). 

  37. Lee K. S. , Choo D. C. & Kim T. W. White organic light-emitting devices with tunable color emission fabricated utilizing exciplex formation at heterointerfaces including m-MDATA . Thin Solid Films 519 , 5257 – 5259 ( 2011 ). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로