$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study 원문보기

PloS one, v.10 no.8, 2015년, pp.e0135382 -   

Corbin, Kendall R. (The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia) ,  Byrt, Caitlin S. (The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia) ,  Bauer, Stefan (Energy Biosciences Institute, University of California, Berkeley, California, United States of America) ,  DeBolt, Seth (Department of Horticulture, University of Kentucky, Lexington, Kentucky, United States of America) ,  Chambers, Don (AUSAGAVE, Aldgate, South Australia, Australia) ,  Holtum, Joseph A. M. (School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia) ,  Karem, Ghazwan (The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia) ,  Henderson, Marilyn (The Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University o) ,  Lahnstein, Jelle ,  Beahan, Cherie T. ,  Bacic, Antony ,  Fincher, Geoffrey B. ,  Betts, Natalie S. ,  Burton, Rachel A.

Abstract AI-Helper 아이콘AI-Helper

Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic bevera...

참고문헌 (79)

  1. 1 Thompson B , Moon TS and Nielsen DR . ‘Hybrid’ processing strategies for expanding and improving the synthesis of renewable bioproducts . Curr Opin Biotechnol . 2014 ; 30 : 17 – 23 . 10.1016/j.copbio.2014.04.005 24794630 

  2. 2 Hill J , Nelson E , Tilman D , Polasky S and Tiffany D . Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels . Proc Natl Acad Sci . 2006 ; 103 : 11206 – 11210 . 16837571 

  3. 3 Tilman D , Hill J and Lehman C . Carbon-negative biofuels from low-input high-diversity grassland biomass . Science . 2006 ; 314 : 1598 – 1600 . 17158327 

  4. 4 Byrt CS , Grof CPL and Furbank RT . C4 Plants as biofuel feedstocks: Optimising biomass production and feedstock quality from a lignocellulosic perspective . J Integr Plant Biol . 2011 ; 53 : 120 – 135 . 10.1111/j.1744-7909.2010.01023.x 21205189 

  5. 5 United States Department of Energy: Energy Efficiency and Renewable Energy. Biomass feedstock composition and property database. 2013; 10. Available: http://www.afdc.energy.gov/biomass/progs/search1.cgi . 

  6. 6 Nobel PS . Environmental biology of Agaves and Cacti . Cambridge : Cambridge University Press ; 1988 . 

  7. 7 Cedeño MC . Tequila production . Crit Rev Biotechnol . 1995 ; 15 : 1 – 11 . 7736598 

  8. 8 Nobel PS and Valenzuela AG . Environmental responses and productivity of the CAM plant, Agave tequilana . Agr Forest Meteorol . 1987 ; 39 : 319 – 334 . 

  9. 9 Borland AM , Griffiths H , Hartwell J and Smith JAC . Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands . J Exp Bot . 2009 ; 60 : 2879 – 2896 . 10.1093/jxb/erp118 19395392 

  10. 10 Mancilla-Margalli NA and López MG . Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species . J Agric Food Chem . 2006 ; 54 : 7832 – 7839 . 17002459 

  11. 11 Nobel PS and Meyer SE . Field productivity of a CAM plant, Agave salmiana , estimated using daily acidity changes under various environmental conditions . Physiol Plant . 1985 ; 65 : 397 – 404 . 

  12. 12 Davis SC , Dohleman FG and Long SP . The global potential for Agave as a biofuel feedstock . GCB Bioenergy . 2011 ; 3 : 68 – 78 . 

  13. 13 Davis SC , Griffiths H , Holtum J , Saavedra AL and Long SP . The evaluation of feedstocks in GCBB continues with a special Issue on Agave for bioenergy . GCB Bioenergy . 2011 ; 3 : 1 – 3 . 

  14. 14 Escamilla-Treviño LL . Potential of plants from the genus Agave as bioenergy crops . BioEnergy Res . 2012 ; 5 : 1 – 9 . 

  15. 15 Holtum J and Chambers D . Feasibility of Agave as a feedstock for biofuel production in Australia Rural Industry Research and Development Corporation , Canberra, Australia RIRDC Publication (10/104). 2010 

  16. 16 Holtum J , Chambers D , Morgan T and Tan DKY . Agave as a biofuel feedstock in Australia . GCB Bioenergy . 2011 ; 3 : 58 – 67 . 

  17. 17 Owen NA and Griffiths H . Marginal land bioethanol yield potential of four crassulacean acid metabolism candidates ( Agave fourcroydes , Agave salmiana , Agave tequilana and Opuntia ficus-indica ) in Australia . GCB Bioenergy . 2013 9 12 10.1111/gcbb.12094 

  18. 18 Somerville C , Youngs H , Taylor C , Davis SC and Long SP . Feedstocks for lignocellulosic biofuels . Science . 2010 ; 329 : 790 – 792 . 10.1126/science.1189268 20705851 

  19. 19 Iñiguez-Covarrubias G , Díaz-Teres R , Sanjuan-Dueñas R , Anzaldo-Hernández J and Rowell RM . Utilization of by-products from the tequila industry. Part 2: potential value of Agave tequilana Weber azul leaves . Bioresour Technol . 2001 ; 77 : 101 – 108 . 11272015 

  20. 20 Li H , Foston MB , Kumar R , Samuel R , Gao X , Hu F , et al Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock . RSC Adv . 2012 ; 2 : 4951 – 4958 . 

  21. 21 Hames B, Scarlata C and Sluiter A. Determination of protein content in biomass. Technical Report: National Renewable Energy Laboratory. 2008; NREL/TP-510-42625. 

  22. 22 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J and Templeton D. Determination of ash in biomass. Technical Report: National Renewable Energy Laboratory. 2005; NREL/TP-510-42622. 

  23. 23 Sluiter A, Ruiz R, Scarlata C, Sluiter J and Templeton D. Determination of extractives in biomass. Technical Report: National Renewable Energy Laboratory. 2005; NREL/TP-510-42619. 

  24. 24 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, et al. Determination of structural carbohydrates and lignin in biomass. Technical Report: National Renewable Energy Laboratory. 2008; NREL/TP-510-42618. 

  25. 25 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J and Templeton D. Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Technical Report: National Renewable Energy Laboratory. 2006; NREL/TP-510-42623. 

  26. 26 Ehrman T . Determination of acid-soluble lignin in biomass Chemical Analaysis and Testing Task Laboratory Analytical Procedure : National Renewable Energy Laboratory 1996 ; 4 . 

  27. 27 Almeida JRM , Modig T , Petersson A , Hähn-Hägerdal B , Lidén G , et al Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae . J Chem Technol Biotechnol . 2007 ; 82 : 340 – 349 . 

  28. 28 Selvendran RR , March JF and Ring SG . Determination of aldoses and uronic acid content of vegetable fiber . Anal Biochem . 1979 ; 96 : 282 – 292 . 474957 

  29. 29 Comino P , Shelat K , Collins H , Lahnstein J and Gidley MJ . Separation and purification of soluble polymers and cell wall fractions from wheat, rye and hull less barley endosperm flours for structure-nutrition studies . J Agric Food Chem . 2013 ; 61 : 12111 – 12122 . 10.1021/jf403558u 24251779 

  30. 30 Burton RA , Gibeaut DM , Bacic A , Findlay K , Roberts K , Hamilton A , et al Virus-induced silencing of a plant cellulose synthase gene . Plant Cell . 2000 ; 12 : 691 – 705 . 10810144 

  31. 31 Wheal MS , Fowles TO and Palmer LT . A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements . Analytical Methods . 2011 ; 3 : 2854 – 2863 . 

  32. 32 Santos JDG , Espeleta AF , Branco A and de Assis SA . Aqueous extraction of pectin from sisal waste . Carbohydr Polym . 2013 ; 92 : 1997 – 2001 . 10.1016/j.carbpol.2012.11.089 23399250 

  33. 33 Liccioli T , Tran TT , Cozzolino D , Jiranek V , Chambers P and Schmidt S . Microvinification—how small can we go? Appl Microbiol Biotechnol . 2011 ; 89 : 1621 – 1628 . 10.1007/s00253-010-2992-6 21076919 

  34. 34 Pettolino FA , Walsh C , Fincher GB and Bacic A . Determining the polysaccharide composition of plant cell walls . Nature Protocols . 2012 ; 7 : 1590 – 1607 . 10.1038/nprot.2012.081 22864200 

  35. 35 Adney B and Baker J. Measurement of cellulase activities. Technical Report: National Renewable Energy Laboratory. 1996; NREL/TP-510-42628. 

  36. 36 Reiter W-D , Chapple CCS and Somerville CR . Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis . Science . 1993 ; 261 : 1032 – 1035 . 17739625 

  37. 37 Harris D , Stork J and Debolt S . Genetic modification in cellulose-synthase reduces crystallinity and improves biochemical conversion to fermentable sugar . GCB Bioenergy . 2009 ; 1 : 51 – 61 . 

  38. 38 Selig M, Weiss N and Ji Y. Enzymatic saccharification of lignocellulosic biomass. Technical Report: National Renewable Energy Laboratory. 2008; NREL/TP-510-42629. 

  39. 39 Burton RA , Collins HM , Kibble NAJ , Smith JA , Shirley NJ , Jobling SA , et al Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-D-glucans and alters their fine structure . Plant Biotech J . 2011 ; 9 : 117 – 135 . 

  40. 40 Wilson S , Burton R , Doblin M , Stone B , Newbigin E , Fincher G , et al Temporal and spatial appearance of wall polysaccharides during cellularization of barley ( Hordeum vulgare ) endosperm . Planta . 2006 ; 224 : 655 – 667 . 16532317 

  41. 41 Aurion Immunogold Reagents & Accessories. Specific localisation methods. 2013; 3. Available: http://bioimaging.dbi.udel.edu/sites/bioimaging.dbi.udel.edu/files/manuals/Aurion%20Immunogold%20Labeling%20Protocols.pdf 

  42. 42 McCartney L , Marcus SE and Knox JP . Monoclonal antibodies to plant cell wall xylans and arabinoxylans . J Histochem Cytochem . 2005 ; 53 : 543 – 546 . 15805428 

  43. 43 Pettolino FA , Hoogenraad NJ , Ferguson C , Bacic A , Johnson E and Stone BA . A (1→ 4)-β-mannan-specific monoclonal antibody and its use in the immunocytochemical location of galactomannans . Planta . 2001 ; 214 : 235 – 242 . 11800387 

  44. 44 Verhertbruggen Y , Marcus SE , Haeger A , Ordaz-Ortiz JJ and Knox JP . An extended set of monoclonal antibodies to pectic homogalacturonan . Carbohydr Res . 2009 ; 344 : 1858 – 1862 . 10.1016/j.carres.2008.11.010 19144326 

  45. 45 Smith JAC , Schulte PJ and Nobel PS . Water flow and water storage in Agave deserti : osmotic implications of crassulacean acid metabolism . Plant Cell Environ . 1987 ; 10 : 639 – 648 . 

  46. 46 Rüggeberg M , Speck T , Paris O , Lapierre C , Pollet B , Koch G , et al Stiffness gradients in vascular bundles of the palm Washingtonia robusta . Proc Biol Sci . 2008 ; 275 : 2221 – 2229 . 10.1098/rspb.2008.0531 18595839 

  47. 47 Franceschi V and Horner H . Calcium oxalate crystals in plants . Bot Rev . 1980 ; 46 : 361 – 427 . 

  48. 48 Gharieb MM and Gadd GM . Influence of nitrogen source on the solubilization of natural gypsum (CaSO 4 . 2H 2 O) and the formation of calcium oxalate by different oxalic and citric acid-producing fungi . Mycol Res . 1999 ; 103 : 473 – 481 . 

  49. 49 Arnott HJ . Plant calcification In: Zipkin I , editor. Biological mineralization . John Wiley and Sons , New York 1973 pp. 609 – 627 . 

  50. 50 Wattendorff J . Ultrastructure of the suberized styloid crystal cells in Agave leaves . Planta . 1976 ; 128 : 163 – 165 . 10.1007/BF00390318 24430692 

  51. 51 Adler PR , Sanderson MA , Boateng AA , Weimer PJ and Jung H-JG . Biomass Yield and biofuel quality of switchgrass harvested in fall or spring . Agron J . 2006 ; 98 : 1518 – 1525 . 

  52. 52 Sun XZ , Hoskin SO , Muetzel S , Molano G and Clark H . Effects of forage chicory ( Cichorium intybus ) and perennial ryegrass ( Lolium perenne ) on methane emissions in vitro and from sheep . Anim Feed Sci Tech . 2011 ; 166–167 : 391 – 397 . 

  53. 53 Whistler Roy L . Solubility of polysaccharides and their behavior in solution In: Isbell HS , editor. Carbohydates in Solution . American Chemical Society , Washington DC ; 1973 pp. 242 – 255 . 

  54. 54 Xiao C and Anderson CT . Roles of pectin in biomass yield and processing for biofuels . Front Plant Sci . 2013 ; 4 . 

  55. 55 Gille S and Pauly M . O-acetylation of plant cell wall polysaccharides . Front Plant Sci . 2012 ; 3 : 12 10.3389/fpls.2012.00012 22639638 

  56. 56 van Zyl C , Prior BA and du Preez JC . Acetic acid inhibition of D-xylose fermentation by Pichia stipitis . Enzyme MicrobTechnol . 1991 ; 13 : 82 – 86 . 

  57. 57 Huber GW , Iborra S , Corma A . Synthesis of tranporation fuels from biomass: Chemistry, catalysts, and engineering . Chem Rev . 2006 ; 106 : 4044 – 4098 . 16967928 

  58. 58 Kabel MA , van den Borne H , Vincken J-P , Voragen AGJ and Schols HA . Structural differences of xylans affect their interaction with cellulose . Carbohydr Polym . 2007 ; 69 : 94 – 105 . 

  59. 59 Alvira P , Tomás-Pejó E , Ballesteros M , Negro MJ . Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review . Bioresour Technol . 2010 ; 101 : 4851 – 4861 . 10.1016/j.biortech.2009.11.093 20042329 

  60. 60 Nigam JN . Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis . J Biotechnol . 2001 ; 87 : 17 – 27 . 11267696 

  61. 61 Yasuda S , Fukushima K and Kakehi A . Formation and chemical structures of acid-soluble lignin I: sulfuric acid treatment time and acid-soluble lignin content of hardwood . J Wood Sci . 2001 ; 47 : 69 – 72 . 

  62. 62 Bauer S and Ibáñez AB . Rapid determination of cellulose . Biotechnol Bioeng . 2014 ; 111 : 2355 – 2357 . 10.1002/bit.25276 24909906 

  63. 63 López-Bañuelos RH , Moscoso FJ , Ortega-Gudiño P , Mendizabal E , Rodrigue D and González-Núñez R . Rotational molding of polyethylene composites based on Agave fibers . Polym Eng Sci . 2012 ; 52 : 2489 – 2497 . 

  64. 64 Singha A and Rana RK . Preparation and properties of Agave fiber-reinforced polystyrene composites . J Thermoplast Compos Mater . 2013 ; 26 : 513 – 526 . 

  65. 65 Mylsamy K and Rajendran I . Investigation on physio-chemical and mechanical properties of raw and alkali-treated Agave americana fiber . J Reinf Plast Comp . 2010 ; 29 : 2925 – 2935 . 

  66. 66 Vieira MC , Heinze T , Antonio-Cruz R and Mendoza-Martinez AM . Cellulose derivatives from cellulosic material isolated from Agave lechuguilla and fourcroydes . Cellulose . 2002 ; 9 : 203 – 212 . 

  67. 67 Kelley SS , Rowell RM , Davis M , Jurich CK and Ibach R . Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry . Biomass Bioenergy . 2004 ; 27 : 77 – 88 . 

  68. 68 Lin Y and Tanaka S . Ethanol fermentation from biomass resources: current state and prospects . Appl Microbiol Biotechnol . 2006 ; 69 : 627 – 642 . 16331454 

  69. 69 Meneses FJ , Henschke PA and Jiranek V . A survey of industrial strains of Saccharomyces cerevisiae reveals numerous altered patterns of maltose and sucrose utilisation . J Inst Brew . 2002 ; 108 : 310 – 321 . 

  70. 70 Arrizon J , Morel S , Gschaedler A and Monsan P . Fructanase and fructosyltransferase activity of non- Saccharomyces yeasts isolated from fermenting musts of Mezcal . Bioresour Technol . 2012 ; 110 : 560 – 565 . 10.1016/j.biortech.2012.01.112 22336744 

  71. 71 Arrizon J , Morel S , Gschaedler A and Monsan P . Purification and substrate specificities of a fructanase from Kluyveromyces marxianus isolated from the fermentation process of Mezcal . Bioresour Technol . 2011 ; 102 : 3298 – 3303 . 10.1016/j.biortech.2010.10.071 21067917 

  72. 72 Richard P and Hilditch S . D-galacturonic acid catabolism in microorganisms and its biotechnological relevance . Appl Microbiol Biotechnol . 2009 ; 82 : 597 – 604 . 10.1007/s00253-009-1870-6 19159926 

  73. 73 U.S. Department of Energy Efficiency and & Renewable Energy. Theoretical ethanol yield calculator. 2003. Available: http://www1.eere.energy.gov/bioenergy/ethanol_yield_calculator.html . 

  74. 74 Manitoba Agriculture, Food and Rural Development. Guidelines for estimating wheat straw biomass production costs 2014. 2014;1. Available: http://www.gov.mb.ca/agriculture/business-and-economics/financial-management/pubs/cop_agrienergy_wheatstrawbiomassaverageresidue.pdf 

  75. 75 Smith GA , Bagby MO , Lewellan RT , Doney DL , Moore PH , Hills FJ , et al Evaluation of sweet sorghum for fermentable sugar production potential . Crop Sci . 1987 ; 27 : 788 – 793 . 

  76. 76 Zhao YL , Dolat A , Steinberger Y , Wang X , Osman A and Xie GH . Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel . Field Crops Res . 2009 ; 111 : 55 – 64 . 

  77. 77 McLaughlin SB and Kszos LA . Development of switchgrass ( Panicum virgatum ) as a bioenergy feedstock in the United States . Biomass Bioenergy . 2005 ; 28 : 515 – 535 . 

  78. 78 Schmer MR , Vogel KP , Mitchell RB and Perrin RK . Net energy of cellulosic ethanol from switchgrass . Proc Natl Acad Sci . 2008 ; 105 : 464 – 469 . 10.1073/pnas.0704767105 18180449 

  79. 79 Favaro L , Basaglia M , Trento A , Van Rensburg E , García-Aparicio M , Van Zyl WH , et al Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production . Biotechnol Biofuels . 2013 ; 6 : 168 10.1186/1754-6834-6-168 24286305 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로