$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique 원문보기

Scientific reports, v.5, 2015년, pp.8936 -   

Zhang, Quan (School of Aerospace Engineering, Beijing Institute of Technology , Beijing 100081, China) ,  Yan, Dong (School of Aerospace Engineering, Beijing Institute of Technology , Beijing 100081, China) ,  Zhang, Kai (School of Aerospace Engineering, Beijing Institute of Technology , Beijing 100081, China) ,  Hu, Gengkai (School of Aerospace Engineering, Beijing Institute of Technology , Beijing 100081, China)

Abstract AI-Helper 아이콘AI-Helper

A significant challenge in conventional heat-shrinkable polymers is to produce controllable microstructures. Here we report that the polymer material fabricated by three-dimensional (3D) printing technique has a heat-shrinkable property, whose initial microstructure can undergo a spontaneous pattern...

참고문헌 (36)

  1. Langer R. & Tirrell D. A. Designing materials for biology and medicine . Nature 428 , 487 – 492 ( 2004 ). 15057821 

  2. Lendlein A. & Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications . Science 296 , 1673 – 1676 ( 2002 ). 11976407 

  3. Lendlein A. & Kelch S. Shape-memory polymers . Angew. Chem. Int. Ed. 41 , 2034 – 2057 ( 2002 ). 

  4. Mishra J. K. , Kim I. & Ha C. S. Heat shrinkable behavior and mechanical response of a low-density polyethylene/millable polyurethane/organoclay ternary nanocomposite . Macromol. Rapid Commun. 25 , 1851 – 1855 ( 2004 ). 

  5. Felton S. M. et al. Self-folding with shape memory composites . Soft Matter 9 , 7688 – 7694 ( 2013 ). 

  6. Xie T. Tunable polymer multi-shape memory effect . Nature 464 , 267 – 270 ( 2010 ). 20220846 

  7. Bose S. , Vahabzadeh S. & Bandyopadhyay A. Bone tissue engineering using 3D printing . Mater. Today 16 , 496 – 504 ( 2013 ). 

  8. Bafekrpour E. , Molotnikov A. , Weaver J. C. , Brechet Y. & Estrin Y. Responsive materials: A novel design for enhanced machine-augmented composites . Sci. Rep. 4 , 3783 ( 2014 ). 24445490 

  9. Martin A. A. , Toth M. & Aharonovich I. Subtractive 3D printing of optically active diamond structures . Sci. Rep. 4 , 5022 ( 2014 ). 24846633 

  10. Fozdar D. Y. , Soman P. , Lee J. W. , Han L. H. & Chen S. Three-dimensional polymer constructs exhibiting a tunable negative Poisson's Ratio . Adv. Funct. Mater. 21 , 2712 – 2720 ( 2011 ). 21841943 

  11. Ge Q. , Qi H. J. & Dunn M. L. Active materials by four-dimension printing . Appl. Phys. Lett. 103 , 131901 ( 2013 ). 

  12. Hofmann M. 3D printing gets a boost and opportunities with polymer materials . ACS Macro Lett. 3 , 382 – 386 ( 2014 ). 

  13. Kang S. H. et al. Buckling-induced reversible symmetry breaking and amplification of chirality using supported cellular structures . Adv. Mater. 25 , 3380 – 3385 ( 2013 ). 23636989 

  14. Kolesky D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs . Adv. Mater. 26 , 3124 – 3130 ( 2014 ). 24550124 

  15. Sun K. et al. 3D printing of interdigitated Li-ion microbattery architectures . Adv. Mater. 25 , 4539 – 4543 ( 2013 ). 23776158 

  16. Luo J. , Qi L. H. , Zhong S. Y. , Zhou J. M. & Li H. J. Printing solder droplets for micro devices packages using pneumatic drop-on-demand (DOD) technique . J. Mater. Process. Technol. 212 , 2066 – 2073 ( 2012 ). 

  17. Zein I. , Hutmacher D. W. , Tan K. C. & Teoh S. H. Fused deposition modeling of novel scaffold architectures for tissue engineering applications . Biomaterials 23 , 1169 - 1185 ( 2002 ). 11791921 

  18. Luo J. , Qi L. , Zhou J. , Xiao Y. & Yang F. Study on stable delivery of charged uniform droplets for freeform fabrication of metal parts . Sci. China Technol. Sc. 54 , 1833 – 1840 ( 2011 ). 

  19. Yang W. G. et al. Advanced shape memory technology to reshape product design, manufacturing and recycling . Polymers 6 , 2287 – 2308 ( 2014 ). 

  20. Tibbits S. & Cheung K. Programmable materials for architectural assembly and automation . Assem. Autom. 32 , 216 – 225 ( 2012 ). 

  21. Tibbits S. 4D Printing: Multi-material shape change . Archit. Des. 84 , 116 – 121 ( 2014 ). 

  22. Kantaros A. & Karalekas D. Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process . Mater. Des. 50 , 44 – 50 ( 2013 ). 

  23. Wang T. M. , Xi J. T. & Jin Y. A model research for prototype warp deformation in the FDM process . Int. J. Adv. Manuf. Technol. 33 , 1087 – 1096 ( 2007 ). 

  24. Bertoldi K. , Reis P. M. , Willshaw S. & Mullin T. Negative Poisson's ratio behavior induced by an elastic instability . Adv. Mater. 22 , 361 – 366 ( 2010 ). 20217719 

  25. Mullin T. , Deschanel S. , Bertoldi K. & Boyce M. Utilization of photon orbital angular momentum in the low-frequency radio domain . Phys. Rev. Lett. 99 , 084301 ( 2007 ). 17930950 

  26. Zhang K. , Duan H. L. , Karihaloo B. L. & Wang J. Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs . Proc. Natl. Acad. Sci. USA 107 , 9502 – 9506 ( 2010 ). 20439765 

  27. Zhang K. , Zhao X. W. , Duan H. L. , Karihaloo B. L. & Wang J. Pattern transformations in periodic cellular solids under external stimuli . J. Appl. Phys. 109 , 084907 ( 2011 ). 

  28. Wang W. S. , Ping P. , Chen X. S. & Jing X. B. Polylactide-based polyurethane and its shape-memory behavior . Eur. Polym. J. 42 , 1240 – 1249 ( 2006 ). 

  29. Radjabian M. , Kish M. H. & Mohammadi N. Structure-property relationship for poly(lactic acid) (PLA) filaments: physical, thermomechanical and shape memory characterization . J. Polym. Res. 19 , 9870 ( 2012 ). 

  30. Zhang W. , Chen L. & Zhang Y. Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer . Polymer 50 , 1311 – 1315 ( 2009 ). 

  31. Sun Q. , Rizvi G. M. , Bellehumeur C. T. & Gu P. Effect of processing conditions on the bonding quality of FDM polymer filaments . Rapid Prototyping J. 14 , 72 – 80 ( 2008 ). 

  32. Goncu F. , Luding S. & Bertoldi K. Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal . J. Acoust. Soc. Am. 131 , EL475 – 480 ( 2012 ). 22713024 

  33. Krishnan D. & Johnson H. T. Optical properties of two-dimensional polymer photonic crystals after deformation-induced pattern transformations . J. Mech. Phys. Solids 57 , 1500 – 1513 ( 2009 ). 

  34. Li J. et al. Switching periodic membranes via pattern transformation and shape memory effect . Soft Matter 8 , 10322 – 10328 ( 2012 ). 

  35. Singamaneni S. et al. Bifurcated mechanical behavior of deformed periodic porous solids . Adv. Funct. Mater. 19 , 1426 – 1436 ( 2009 ). 

  36. Drumright R. E. , Gruber P. R. & Henton D. E. Polylactic acid technology . Adv. Mater. 12 , 1841 – 1846 ( 2000 ). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로