$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors 원문보기

Sensors, v.15 no.9, 2015년, pp.23303 - 23324  

Cheng, Juan (Department of Biomedical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China) ,  Chen, Xun (E-Mails: chengjuan@hfut.edu.cn (J.C.)) ,  Liu, Aiping (xun.chen@hfut.edu.cn (X.C.)) ,  Peng, Hu (hpeng@hfut.edu.cn (H.P.))

Abstract AI-Helper 아이콘AI-Helper

Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR f...

주제어

참고문헌 (62)

  1. 1. Ong S.C.W. Ranganath S. Automatic sign language analysis: A survey and the future beyond lexical meaning IEEE Trans. Pattern Anal. Mach. Intell. 2005 27 873 891 10.1109/TPAMI.2005.112 15943420 

  2. 2. Kong W.W. Ranganath S. Towards subject independent continuous sign language recognition: A segment and merge approach Pattern Recognit. 2014 47 1294 1308 10.1016/j.patcog.2013.09.014 

  3. 3. Fagiani S.S.M. Principi E. Piazza F. Signer independent isolated Italian sign recognition based on hidden Markov models Pattern Anal. Appl. 2015 18 385 402 10.1007/s10044-014-0400-z 

  4. 4. Regina E. Chuan C. Guardino C. American sign language recognition using leap motion sensor Proceedings of the 13th International Conference on Machine Learning and Applications (ICMLA) Detroit, MI, USA 3–5 December 2014 541 544 

  5. 5. Ding L. Martinez A.M. Modelling and recognition of the linguistic components in American sign language Image Vis. Comput. 2009 27 1826 1844 10.1016/j.imavis.2009.02.005 20161003 

  6. 6. Oz C. Leu M.C. American sign language word recognition with a sensory glove using artificial neural networks Eng. Appl. Artif. Intell. 2011 24 1204 1213 10.1016/j.engappai.2011.06.015 

  7. 7. Starner T. Pentland A. Real-time American sign language recognition from video using hidden Markov models Proceedings of the International Symposium on Computer Vision Coral Gables, FL, USA 19–21 November 1995 265 270 

  8. 8. Weaver J. Starner T. Pentland A. Real-time American sign language recognition using desk and wearable computer based video IEEE Trans. Pattern Anal. Mach. Intell. 1998 20 1371 1375 

  9. 9. Vogler C. Metaxes D. A framework for recognizing the simultaneous aspects of American sign language Comput. Vis. Image Underst. 2001 81 358 384 10.1006/cviu.2000.0895 

  10. 10. Vogler C. Goldenstein S. Facial movement analysis in ASL Univers. Access Inf. Soc. 2008 6 363 374 10.1007/s10209-007-0096-6 

  11. 11. Deriche M. Mohandes M. Liu J. Image-based and sensor-based approaches to Arabic sign language recognition IEEE Trans. Hum. Mach. Syst. 2014 44 551 557 

  12. 12. Fanaswala M. Amin F. Assaleh K. Shanableh T. Bajaj H. Continuous Arabic sign language recognition in user dependent mode J. Intell. Learn. Syst. Appl. 2010 2 19 27 

  13. 13. Assaleh K. Shanableh T. Al-Rousan M. Spatio-temporal feature-extraction techniques for isolated gesture recognition in Arabic sign language IEEE Trans. Syst. Man Cybern. Part B Cybern. 2007 37 641 650 

  14. 14. Kosmidou V.E. Hadjileontiadis L.J. Intrinsic mode entropy: An enhanced classification means for automated Greek sign language gesture recognition Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vancouver, BC, USA 20–25 August 2008 5057 5060 

  15. 15. Kosmidou V.E. Hadjileontiadis L.J. Sign language recognition using intrinsic-mode sample entropy on sEMG and accelerometer data IEEE Trans. Biomed. Eng. 2009 56 2879 2890 10.1109/TBME.2009.2013200 19174329 

  16. 16. Petrantonakis P.C. Kosmidou V.E. Hadjileontiadis L.J. Enhanced sign language recognition using weighted intrinsic-mode entropy and signer’s level of deafness IEEE Trans. Syst. Man Cybern. Part B Cybern. 2011 41 1531 1543 

  17. 17. Kim J.S. Jang W. Bien Z. A dynamic gesture recognition system for the Korean sign language (KSL) IEEE Trans. Syst. Man Cybern. Part B Cybern. 1996 26 354 359 

  18. 18. Park G. Jang W. Kim J. Lee C. Bien Z. Kim S. Real-time recognition system of Korean sign language based on elementary components Proceedings of the Sixth IEEE International Conference on Fuzzy Systems Barcelona, Spain 1–5 July 1997 Volume 3 1463 1468 

  19. 19. Bang W. Kim J. Park K. Bien Z.Z. Continuous gesture recognition system for Korean sign language based on fuzzy logic and hidden Markov model Proceedings of the 2002 IEEE International Conference on Fuzzy Systems Honolulu, HI, USA 12–17 May 2002 

  20. 20. Wang C. Gao W. Shan S. An approach based on phonemes to large vocabulary Chinese sign language recognition Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition Washington, DC, USA 21–21 May 2002 

  21. 21. Zhang X. Wang K. Li Y. Chen X. Wang Z.J. A sign-component-based framework for Chinese sign language recognition using accelerometer and sEMG data IEEE Trans. Biomed. Eng. 2012 59 2695 2704 22438511 

  22. 22. Wang C. Kong D. Wang R. Yin B. Similarity assessment model for Chinese sign language videos IEEE Trans. Multimed. 2014 16 751 761 10.1109/TMM.2014.2298382 

  23. 23. China Disabled Persons’ Federation The Number of Persons with Disabilities in the End of 2010 Available online: http://www.cdpf.org.cn/sjzx/cjrgk/201206/t20120626_387581.shtml (accessed on 4 May 2015) 

  24. 24. China Association of the Deaf Chinese Sign Language (Revised Edition) Hua Xia Press Beijing, China 2003 (In Chinese) 

  25. 25. Katsamanis A. Theodorakis S. Maragos P. Product-HMMs for automatic sign language recognition Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing Taipei, Taiwan 19–24 April 2009 1601 1604 

  26. 26. Fang G. Gao W. A SRN/HMM system for signer-independent continuous sign language recognition Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition Washington, DC, USA 21–21 May 2002 312 317 

  27. 27. Zhang T. Sun C. Xu C. Latent support vector machine modeling for sign language recognition with Kinect Acm Trans. Intell. Syst. Technol. 2015 6 10.1145/2629481 

  28. 28. Tang A. Huang J. Lu K. Wang Y.F. Li H. A real-time hand posture recognition system using deep neural networks Acm Trans. Intell. Syst. Technol. 2015 6 10.1145/2735952 

  29. 29. China Disabled Persons’ Federation Graphic Book of Phonology- and Radical-Coded Getures Available online: http://club.china.com/data/thread/1011/2717/35/28/5_1.html (accessed on 5 April 2015) 

  30. 30. Silanon K. Suvonvorn N. Finger-spelling recognition system using fuzzy finger shape and hand appearance features Proceedings of the Fourth International Conference on Digital Information and Communication Technology and It’s Applications (DICTAP) Bangkok, Thailand 6–8 May 2014 419 424 

  31. 31. Dahmani D. Larabi S. User-independent system for sign language finger spelling recognition J. Vis. Commun. Image Represent. 2014 25 1240 1250 10.1016/j.jvcir.2013.12.019 

  32. 32. Asselin P.K. Allen J.M. Foulds R. American sign language finger spelling recognition system Proceedings of the IEEE 29th Annual Bioengineering Conference Newark, NJ, USA 22–23 March 2003 285 286 

  33. 33. Grobel K. Assan M. Isolated sign language recognition using hidden Markov models Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation Orlando, FL, USA 12–15 October 1997 Volume 1 162 167 

  34. 34. Shanableh T. Tubaiz N. Assaleh K. Glove-based continuous Arabic sign language recognition in user-dependent mode IEEE Trans. Hum. Mach. Syst. 2015 45 526 533 

  35. 35. Fang G. Gao W. Zhao D. Large vocabulary sign language recognition based on fuzzy decision trees IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2004 34 305 314 10.1109/TSMCA.2004.824852 

  36. 36. Sarkar S. Yang R. Loeding B. Handling movement epenthesis and hand segmentation ambiguities in continuous sign language recognition using nested dynamic programming IEEE Trans. Pattern Anal. Mach. Intell. 2010 32 462 477 20075472 

  37. 37. Fang G. Gao W. Zhao D. Large-vocabulary continuous sign language recognition based on transition-movement models IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2007 37 1 9 10.1109/TSMCA.2006.886347 

  38. 38. McDonald J. Kell D. Markham C. Weakly supervised training of a sign language recognition system using multiple instance learning density matrices IEEE Trans. Syst. Man Cybern. Part B Cybern. 2011 41 526 541 

  39. 39. Roy S.H. Moore J. de Luca G. Nawab S.H. de Luca C.J. Cheng M.S. Chang S. A combined sEMG and accelerometer system for monitoring functional activity in stroke IEEE Trans. Neural Syst. Rehabil. Eng. 2009 17 585 594 10.1109/TNSRE.2009.2036615 20051332 

  40. 40. Li Y. Lantz V. Wang K. Zhang X. Chen X. Yang J. A framework for hand gesture recognition based on accelerometer and EMG sensors IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2011 41 1064 1076 

  41. 41. Morris D. Saponas T.S. Tan D.S. Balakrishnan R. Demonstrating the Feasibility of Using Forearm Electromyography for Muscle-Computer Interfaces Proceedings of the SIGCHI Conference on Human Factors in Computing Systems Boston, MA, USA 15–17 March 2008 515 524 

  42. 42. Liang R.H. Ouhyoung M. A real-time continuous gesture recognition system for sign language Proceedings of the International Conference Automatic Face and Gesture Recognition Nara, Japan 14–16 April 1998 558 565 

  43. 43. Zhou P. Li X. Aruin A.S. Teager-kaiser energy operation of surface EMG improves muscle activity onset detection Ann. Biomed. Eng. 2007 35 1532 1538 17473984 

  44. 44. Zhang X. Zhou P. Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes J. Electromyogr. Kinesiol. 2012 22 901 907 10.1016/j.jelekin.2012.06.005 22800657 

  45. 45. Xu Q. Quan Y. Yang L. He J. An adaptive algorithm for the determination of the onset and offset of muscle contraction by emg signal processing IEEE Trans. Neural Syst. Rehabil. Eng. 2013 21 65 73 10.1109/TNSRE.2012.2226916 23193462 

  46. 46. Ying D. Liu J. Rymer W.Z. EMG burst presence probability: A joint time-frequency representation of muscle activity and its application to onset detection J. Biomech. 2015 48 1193 1197 25748222 

  47. 47. Cheng J. Chen X. Lu Z. Key-press gestures recognition and interaction based on sEMG signals Proceedings of the 1st International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction, ICMI-MLMI 2010 Beijing, China 8–12 November 2010 

  48. 48. Chen X. Wang Z.J. Pattern recognition of number gestures based on a wireless surface EMG system Biomed. Signal Proc. Control 2013 8 184 192 10.1016/j.bspc.2012.08.005 

  49. 49. Oskoei M.A. Hu H. Myoelectric control systems: A survey Biomed. Signal Proc. Control 2007 2 275 294 10.1016/j.bspc.2007.07.009 

  50. 50. Liu C. Wechsler H. Robust coding schemes for indexing and retrieval from large face databases IEEE Trans. Image Proc. Publ. IEEE Signal Proc. Soc. 2000 9 132 137 

  51. 51. Xu P. Sun Q. Liu R. Jiang L. Dynamic-time-warping-based measurement data alignment model for condition-based railroad track maintenance IEEE Trans. Intell. Transp. Syst. 2015 16 799 812 10.1109/TITS.2014.2342235 

  52. 52. Deng J.J. Leung C.H.C. Dynamic time warping for music retrieval using time series modeling of musical emotions IEEE Trans. Affect. Comput. 2015 6 137 151 10.1109/TAFFC.2015.2404352 

  53. 53. Salvador S. Chan P. Toward accurate dynamic time warping in linear time and space Intell. Data Anal. 2007 11 561 580 

  54. 54. Coelho A.L.V. Lima C.A.M. Assessing fractal dimension methods as feature extractors for EMG signal classification Eng. Appl. Artif. Intell. 2014 36 81 98 10.1016/j.engappai.2014.07.009 

  55. 55. Chen J.J. Shiavi R. Temporal feature extraction and clustering analysis of electromyographic linear envelopes in gait studies IEEE Trans. Bio-Med. Eng. 1990 37 295 302 10.1109/10.52330 2184121 

  56. 56. Parker P.A. Englehart K. Hudgins B. Stevenson M. Classification of the myoelectric signal using time-frequency based representations Med. Eng. Phys. 1999 21 431 438 10624739 

  57. 57. Kuzborskij I. Elsig S. Mittaz H.A.G. Deriaz O. Castellini C. Muller H. Atzori M. Gijsberts A. Caputo B. Characterization of a benchmark database for myoelectric movement classification IEEE Trans. Neural Syst. Rehabil. Eng. 2015 23 73 83 25486646 

  58. 58. Rabiner L. A tutorial on hidden Markov models and selected applications in speech recognition Proc. IEEE 1989 77 257 286 10.1109/5.18626 

  59. 59. Lee K.S. EMG-based speech recognition using hidden Markov models with global control variables IEEE Trans. Biomed. Eng. 2008 55 930 940 10.1109/TBME.2008.915658 18334384 

  60. 60. Chan A.D.C. Englehart K.B. Continuous myoelectric control for powered prostheses using hidden Markov models IEEE Trans. Biomed. Eng. 2005 52 121 124 10.1109/TBME.2004.836492 15651571 

  61. 61. Wang Y. Zhang X. Zhao Z. A hybrid speech recognition training method for HMM based on genetic algorithm and Baum Welch algorithm Proceedings of the Second International Conference on Innovative Computing, Information and Control Kumamoto, Japan 5–7 September 2007 572 

  62. 62. Wickramasuriya J. Liu J. Zhong L. Vasudevan V. uWave: Accelerometer-based personalized gesture recognition and its applications Pervasive Mob. Comput. 2009 5 657 675 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로