$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Enhanced Jumping-Droplet Departure

Langmuir : the ACS journal of surfaces and colloids, v.31 no.49, 2015년, pp.13452 - 13466  

Kim, Moon-Kyung ,  Cha, Hyeongyun ,  Birbarah, Patrick ,  Chavan, Shreyas ,  Zhong, Chen ,  Xu, Yuehan ,  Miljkovic, Nenad

Abstract AI-Helper 아이콘AI-Helper

Water vapor condensation on superhydrophobic surfaces has received much attention in recent years because of its ability to shed water droplets at length scales 3 decades smaller than the capillary length (∼1 mm) via coalescence-induced droplet jumping. Jumping-droplet condensation has been demo...

참고문헌 (70)

  1. Perez-Lombard, L., Ortiz, J., Pout, C.. A review on buildings energy consumption information. Energy and buildings, vol.40, no.3, 394-398.

  2. Beer, J.M.. High efficiency electric power generation: The environmental role. Progress in energy and combustion science, vol.33, no.2, 107-134.

  3. Peters, T. B., McCarthy, M., Allison, J., Dominguez-Espinosa, F. A., Jenicek, D., Kariya, H. A., Staats, W. L., Brisson, J. G., Lang, J. H., Wang, E. N.. Design of an Integrated Loop Heat Pipe Air-Cooled Heat Exchanger for High Performance Electronics. IEEE transactions on components, packaging, and manufacturing technology, vol.2, no.10, 1637-1648.

  4. Khawaji, Akili D., Kutubkhanah, Ibrahim K., Wie, Jong-Mihn. Advances in seawater desalination technologies. Desalination, vol.221, no.1, 47-69.

  5. Nucleation: Basic Theory with Applications Kaschiev D. 2000 

  6. Le Fevre, E. J.; Rose, J. W.A Theory af Heat Transfer by Dropwise Condensation; Proceedings of the Third International Heat Transfer Conference, Chicago, IL, 1966; ASME, pp362-375. 

  7. Schmidt, E., Schurig, W., Sellschopp, W.. Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform. Technische Mechanik und Thermodynamik, vol.1, no.2, 53-63.

  8. Rose, J.W., Glicksman, L.R.. Dropwise condensation-The distribution of drop sizes. International journal of heat and mass transfer, vol.16, no.2, 411-425.

  9. Rose, J.W.. The effect of surface thermal conductivity on dropwise condensation heat transfer. International journal of heat and mass transfer, vol.21, no.1, 80-81.

  10. Holden, K. M., Wanniarachchi, A. S., Marto, P. J., Boone, D. H., Rose, J. W.. The Use of Organic Coatings to Promote Dropwise Condensation of Steam. Journal of heat transfer, vol.109, no.3, 768-774.

  11. Lafuma, Aurélie, Quéré, David. Superhydrophobic states. Nature materials, vol.2, no.7, 457-460.

  12. Boreyko, Jonathan B., Chen, Chuan-Hua. Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces. Physical review letters, vol.103, no.18, 184501-.

  13. Enright, Ryan, Miljkovic, Nenad, Sprittles, James, Nolan, Kevin, Mitchell, Robert, Wang, Evelyn N.. How Coalescing Droplets Jump. ACS nano, vol.8, no.10, 10352-10362.

  14. Liu, Fangjie, Ghigliotti, Giovanni, Feng, James J., Chen, Chuan-Hua. Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. Journal of fluid mechanics, vol.752, 39-65.

  15. Liu, Fangjie, Ghigliotti, Giovanni, Feng, James J., Chen, Chuan-Hua. Self-propelled jumping upon drop coalescence on Leidenfrost surfaces. Journal of fluid mechanics, vol.752, 22-38.

  16. Nam, Youngsuk, Kim, Hyunsik, Shin, Seungwon. Energy and hydrodynamic analyses of coalescence-induced jumping droplets. Applied physics letters, vol.103, no.16, 161601-.

  17. Nam, Youngsuk, Seo, Donghyun, Lee, Choongyeop, Shin, Seungwon. Droplet coalescence on water repellant surfaces. Soft matter, vol.11, no.1, 154-160.

  18. Miljkovic, Nenad, Enright, Ryan, Nam, Youngsuk, Lopez, Ken, Dou, Nicholas, Sack, Jean, Wang, Evelyn N.. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.13, no.1, 179-187.

  19. Chen, Xuemei, Wu, Jun, Ma, Ruiyuan, Hua, Meng, Koratkar, Nikhil, Yao, Shuhuai, Wang, Zuankai. Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation. Advanced functional materials, vol.21, no.24, 4617-4623.

  20. Feng, Jie, Pang, Yichuan, Qin, Zhaoqian, Ma, Ruiyuan, Yao, Shuhuai. Why Condensate Drops Can Spontaneously Move Away on Some Superhydrophobic Surfaces but Not on Others. ACS applied materials & interfaces, vol.4, no.12, 6618-6625.

  21. Feng, Jie, Qin, Zhaoqian, Yao, Shuhuai. Factors Affecting theSpontaneous Motion of CondensateDrops on Superhydrophobic Copper Surfaces. Langmuir : the ACS journal of surfaces and colloids, vol.28, no.14, 6067-6075.

  22. Lv, Cunjing, Hao, Pengfei, Yao, Zhaohui, Song, Yu, Zhang, Xiwen, He, Feng. Condensation and jumping relay of droplets on lotus leaf. Applied physics letters, vol.103, no.2, 021601-.

  23. Rykaczewski, Konrad. Microdroplet Growth Mechanism during Water Condensation on Superhydrophobic Surfaces. Langmuir : the ACS journal of surfaces and colloids, vol.28, no.20, 7720-7729.

  24. Rykaczewski, Konrad, Osborn, William A., Chinn, Jeff, Walker, Marlon L., Scott, John Henry J., Jones, Wanda, Hao, Chonglei, Yao, Shuhuai, Wang, Zuankai. How nanorough is rough enough to make a surface superhydrophobic during water condensation?. Soft matter, vol.8, no.33, 8786-8794.

  25. Tian, Jian, Zhu, Jie, Guo, Hao-Yuan, Li, Juan, Feng, Xi-Qiao, Gao, Xuefeng. Efficient Self-Propelling of Small-Scale Condensed Microdrops by Closely Packed ZnO Nanoneedles. The journal of physical chemistry letters, vol.5, no.12, 2084-2088.

  26. McCarthy, Matthew, Gerasopoulos, Konstantinos, Maroo, Shalabh C., Hart, A. John. Materials, Fabrication, and Manufacturing of Micro/Nanostructured Surfaces for Phase-Change Heat Transfer Enhancement. Nanoscale and microscale thermophysical engineering, vol.18, no.3, 288-310.

  27. Li, GuanQiu, Alhosani, Mohamed H., Yuan, ShaoJun, Liu, HaoRan, Ghaferi, Amal Al, Zhang, TieJun. Microscopic Droplet Formation and Energy Transport Analysis of Condensation on Scalable Superhydrophobic Nanostructured Copper Oxide Surfaces. Langmuir : the ACS journal of surfaces and colloids, vol.30, no.48, 14498-14511.

  28. Yanagisawa, K., Sakai, M., Isobe, T., Matsushita, S., Nakajima, A.. Investigation of droplet jumping on superhydrophobic coatings during dew condensation by the observation from two directions. Applied surface science, vol.315, 212-221.

  29. Lo, Ching-Wen, Wang, Chi-Chuan, Lu, Ming-Chang. Scale Effect on Dropwise Condensation on Superhydrophobic Surfaces. ACS applied materials & interfaces, vol.6, no.16, 14353-14359.

  30. Wisdom, Katrina M., Watson, Jolanta A., Qu, Xiaopeng, Liu, Fangjie, Watson, Gregory S., Chen, Chuan-Hua. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proceedings of the National Academy of Sciences of the United States of America, vol.110, no.20, 7992-7997.

  31. Watson, Gregory S., Schwarzkopf, Lin, Cribb, Bronwen W., Myhra, Sverre, Gellender, Marty, Watson, Jolanta A.. Removal mechanisms of dew via self-propulsion off the gecko skin. Journal of the Royal Society, Interface, vol.12, no.105, 20141396-20141396.

  32. Watson, Gregory S., Gellender, Marty, Watson, Jolanta A.. Self-propulsion of dew drops on lotus leaves: a potential mechanism for self cleaning. Biofouling, vol.30, no.4, 427-434.

  33. Boreyko, Jonathan B., Zhao, Yuejun, Chen, Chuan-Hua. Planar jumping-drop thermal diodes. Applied physics letters, vol.99, no.23, 234105-.

  34. Boreyko, Jonathan B., Collier, C. Patrick. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces. ACS nano, vol.7, no.2, 1618-1627.

  35. Chen, Xuemei, Ma, Ruiyuan, Zhou, Hongbo, Zhou, Xiaofeng, Che, Lufeng, Yao, Shuhuai, Wang, Zuankai. Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion. Scientific reports, vol.3, 2515-.

  36. Lv, Jianyong, Song, Yanlin, Jiang, Lei, Wang, Jianjun. Bio-Inspired Strategies for Anti-Icing. ACS nano, vol.8, no.4, 3152-3169.

  37. Zhang, Qiaolan, He, Min, Chen, Jing, Wang, Jianjun, Song, Yanlin, Jiang, Lei. Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Chemical communications : Chem comm, vol.49, no.40, 4516-4518.

  38. Boreyko, J.B., Chen, C.H.. Vapor chambers with jumping-drop liquid return from superhydrophobic condensers. International journal of heat and mass transfer, vol.61, 409-418.

  39. Preston, Daniel J., Miljkovic, Nenad, Wang, Evelyn N., Enright, Ryan. Jumping Droplet Electrostatic Charging and Effect on Vapor Drag. Journal of heat transfer, vol.136, no.8, 080909-.

  40. Miljkovic, Nenad, Preston, Daniel J., Enright, Ryan, Wang, Evelyn N.. Jumping-droplet electrostatic energy harvesting. Applied physics letters, vol.105, no.1, 013111-.

  41. Miljkovic, Nenad, Preston, Daniel J., Enright, Ryan, Wang, Evelyn N.. Electrostatic charging of jumping droplets. Nature communications, vol.4, 2517-.

  42. Enright, Ryan, Miljkovic, Nenad, Alvarado, Jorge L., Kim, Kwang, Rose, John W.. Dropwise Condensation on Micro- and Nanostructured Surfaces. Nanoscale and microscale thermophysical engineering, vol.18, no.3, 223-250.

  43. Miljkovic, Nenad, Wang, Evelyn N.. Condensation heat transfer on superhydrophobic surfaces. MRS bulletin, vol.38, no.5, 397-406.

  44. Enright, Ryan, Miljkovic, Nenad, Dou, Nicholas, Nam, Youngsuk, Wang, Evelyn N.. Condensation on Superhydrophobic Copper Oxide Nanostructures. Journal of heat transfer, vol.135, no.9, 091304-.

  45. Miljkovic, Nenad, Enright, Ryan, Wang, Evelyn N.. Effect of Droplet Morphology on Growth Dynamics and Heat Transfer during Condensation on Superhydrophobic Nanostructured Surfaces. ACS nano, vol.6, no.2, 1776-1785.

  46. 10.1115/MNHMT2012-75278 Miljkovic, N.; Enright, R.; Wang, E. N.Growth Dynamics During Dropwise Condensation on Nanostructured Superhydrophobic Surfaces.3rd Micro/Nanoscale Heat & Mass Transfer International Conference;ASME, 2012. 

  47. Miljkovic, Nenad, Enright, Ryan, Wang, Evelyn N.. Modeling and Optimization of Superhydrophobic Condensation. Journal of heat transfer, vol.135, no.11, 111004-.

  48. Cheng, Jiangtao, Vandadi, Aref, Chen, Chung-Lung. Condensation heat transfer on two-tier superhydrophobic surfaces. Applied physics letters, vol.101, no.13, 131909-.

  49. Ölçeroğlu, Emre, Hsieh, Chia-Yun, Rahman, Md Mahamudur, Lau, Kenneth K. S., McCarthy, Matthew. Full-Field Dynamic Characterization of Superhydrophobic Condensation on Biotemplated Nanostructured Surfaces. Langmuir : the ACS journal of surfaces and colloids, vol.30, no.25, 7556-7566.

  50. 10.1115/IMECE2012-88158 Olceroglu, E.; King, S. M.; Rahman, M. M.; McCarthy, M.Biotemplated Superhydrophobic Surfaces for Enhanced Dropwise Condensation.Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 2012; pp2809-2815. 

  51. Attinger, Daniel, Frankiewicz, Christophe, Betz, Amy R., Schutzius, Thomas M., Ganguly, Ranjan, Das, Arindam, Kim, Chang-Jin, Megaridis, Constantine M.. Surface engineering for phase change heat transfer: A review. MRS energy & sustainability : a review journal, vol.1, 4-.

  52. Chen, Xuemei, Weibel, Justin A., Garimella, Suresh V.. Exploiting Microscale Roughness on Hierarchical Superhydrophobic Copper Surfaces for Enhanced Dropwise Condensation. Advanced materials interfaces, vol.2, no.3, 1400480-.

  53. Hou, Youmin, Yu, Miao, Chen, Xuemei, Wang, Zuankai, Yao, Shuhuai. Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic Surface. ACS nano, vol.9, no.1, 71-81.

  54. Rykaczewski, Konrad, Paxson, Adam T., Anand, Sushant, Chen, Xuemei, Wang, Zuankai, Varanasi, Kripa K.. Multimode Multidrop Serial Coalescence Effects during Condensation on Hierarchical Superhydrophobic Surfaces. Langmuir : the ACS journal of surfaces and colloids, vol.29, no.3, 881-891.

  55. Lv, Cunjing, Hao, Pengfei, Yao, Zhaohui, Niu, Fenglei. Departure of Condensation Droplets on Superhydrophobic Surfaces. Langmuir : the ACS journal of surfaces and colloids, vol.31, no.8, 2414-2420.

  56. Nam, Youngsuk, Ju, Y. Sungtaek. A comparative study of the morphology and wetting characteristics of micro/nanostructured Cu surfaces for phase change heat transfer applications. Journal of adhesion science and technology, vol.27, no.20, 2163-2176.

  57. Rykaczewski, K., Scott, J. H. J., Fedorov, A. G.. Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces. Applied physics letters, vol.98, no.9, 093106-.

  58. Enright, Ryan, Miljkovic, Nenad, Al-Obeidi, Ahmed, Thompson, Carl V., Wang, Evelyn N.. Condensation on Superhydrophobic Surfaces: The Role of Local Energy Barriers and Structure Length Scale. Langmuir : the ACS journal of surfaces and colloids, vol.28, no.40, 14424-14432.

  59. Miljkovic, Nenad, Preston, Daniel J., Enright, Ryan, Wang, Evelyn N.. Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces. ACS nano, vol.7, no.12, 11043-11054.

  60. Peng, Benli, Wang, Sifang, Lan, Zhong, Xu, Wei, Wen, Rongfu, Ma, Xuehu. Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence. Applied physics letters, vol.102, no.15, 151601-.

  61. Liang, Zhi, Keblinski, Pawel. Coalescence-induced jumping of nanoscale droplets on super-hydrophobic surfaces. Applied physics letters, vol.107, no.14, 143105-.

  62. Liu, T.Q., Sun, W., Sun, X.Y., Ai, H.R.. Mechanism study of condensed drops jumping on super-hydrophobic surfaces. Colloids and surfaces. A, Physicochemical and engineering aspects, vol.414, 366-374.

  63. Wang, Feng-Chao, Yang, Fuqian, Zhao, Ya-Pu. Size effect on the coalescence-induced self-propelled droplet. Applied physics letters, vol.98, no.5, 053112-.

  64. Liu, X., Cheng, P.. 3D multiphase lattice Boltzmann simulations for morphological effects on self-propelled jumping of droplets on textured superhydrophobic surfaces. International communications in heat and mass transfer, vol.64, 7-13.

  65. Liu, X., Cheng, P., Quan, X.. Lattice Boltzmann simulations for self-propelled jumping of droplets after coalescence on a superhydrophobic surface. International journal of heat and mass transfer, vol.73, 195-200.

  66. Paulsen, Joseph D., Burton, Justin C., Nagel, Sidney R., Appathurai, Santosh, Harris, Michael T., Basaran, Osman A.. The inexorable resistance of inertia determines the initial regime of drop coalescence. Proceedings of the National Academy of Sciences of the United States of America, vol.109, no.18, 6857-6861.

  67. Qu, Xiaopeng, Boreyko, Jonathan B., Liu, Fangjie, Agapov, Rebecca L., Lavrik, Nickolay V., Retterer, Scott T., Feng, James J., Collier, C. Patrick, Chen, Chuan-Hua. Self-propelled sweeping removal of dropwise condensate. Applied physics letters, vol.106, no.22, 221601-.

  68. Birbarah, Patrick, Li, Zhaoer, Pauls, Alexander, Miljkovic, Nenad. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces. Langmuir : the ACS journal of surfaces and colloids, vol.31, no.28, 7885-7896.

  69. He, Min, Zhang, Qiaolan, Zeng, Xiping, Cui, Dapeng, Chen, Jing, Li, Huiling, Wang, Jianjun, Song, Yanlin. Hierarchical Porous Surface for Efficiently Controlling Microdroplets' Self‐Removal. Advanced materials, vol.25, no.16, 2291-2295.

  70. Zhang, Kungang, Liu, Fangjie, Williams, Adam J., Qu, Xiaopeng, Feng, James J., Chen, Chuan-Hua. Self-Propelled Droplet Removal from Hydrophobic Fiber-Based Coalescers. Physical review letters, vol.115, no.7, 074502-.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로