$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Development of a Simulation Model for the Vacuum Pressure Swing Adsorption Process To Sequester Carbon Dioxide from Coalbed Methane

Industrial & engineering chemistry research, v.55 no.4, 2016년, pp.1013 - 1023  

Ko, Daeho

Abstract AI-Helper 아이콘AI-Helper

Coalbed methane is a worthwhile potential energy source, because methane gas is eco-friendly and a huge amount of coalbed methane has been buried in the United States, China, Australia, etc. This paper introduces a new simulation model of a vacuum pressure swing adsorption process that has been wide...

참고문헌 (55)

  1. Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., Corma, A., Mirodatos, C.. Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical engineering journal, vol.155, no.3, 553-566.

  2. Gas Well Deliquification Lea J. F. 2008 2 

  3. Bibler, Carol J, Marshall, James S, Pilcher, Raymond C. Status of worldwide coal mine methane emissions and use. International journal of coal geology, vol.35, no.1, 283-310.

  4. Warmuzinski, K.. Harnessing methane emissions from coal mining. Process safety and environmental protection : transactions of the Institution of Chemical Engineers, Part B, vol.86, no.5, 315-320.

  5. Assessment of the worldwide market potential for oxidizing coal mine ventilation air methane; EPA 430-R-03-002;U.S. Environmental Protection Agency: July 2003. 

  6. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2008; EPA 430-R-10-006;U.S. Environmental Protection Agency: April 2010. 

  7. Karacan, C.O., Ruiz, F.A., Cote, M., Phipps, S.. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. International journal of coal geology, vol.86, no.2, 121-156.

  8. Flores, Romeo M.. Coalbed methane: From hazard to resource. International journal of coal geology, vol.35, no.1, 3-26.

  9. Cavenati, Simone, Grande, Carlos A., Rodrigues, Alrio E.. Layered Pressure Swing Adsorption for Methane Recovery from CH4/CO2/N2 Streams. Adsorption : journal of the International Adsorption Society, vol.11, no.suppl1, 549-554.

  10. Beronich, Erika L., Abdi, Majid Abedinzadegan, Hawboldt, Kelly A.. Prediction of natural gas behaviour in loading and unloading operations of marine CNG transportation systems. Journal of natural gas science and engineering, vol.1, no.1, 31-38.

  11. Walton, K. S., Cavalcante Jr., C. L., LeVan, M. Douglas. Adsorption of light alkanes on coconut nanoporous activated carbon. Brazilian journal of chemical engineering : publication of the Brazilian Society of Chemical Engineering, vol.23, no.4, 555-561.

  12. Rios, R.B., Bastos-Neto, M., Amora, M.R., Torres, A.E.B., Azevedo, D.C.S., Cavalcante, C.L.. Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption. Fuel, vol.90, no.1, 113-119.

  13. Fundamentals of Natural Gas Processing Kidnay A. J. 2006 10.1201/9781420014044 

  14. GPSA Engineering Data Book Gas Processors Suppliers Association 2004 12 

  15. Natural Gas: Production Processing Transport Rojey A. 1997 

  16. Gas Purification Kohl A. 1997 5 

  17. Daimiger, U.; Lind, W.Adsorption Processes for Natural Gas Treatment: A Technology Update;Engelhard: 2004. 

  18. Bhadra, S. J.Methane-Nitrogen Separation by Pressure Swing Adsorption. Masters Thesis,National University of Singapore, 2007. 

  19. Bae, Youn-Sang, Mulfort, Karen L., Frost, Houston, Ryan, Patrick, Punnathanam, Sudeep, Broadbelt, Linda J., Hupp, Joseph T., Snurr, Randall Q.. Separation of CO2 from CH4 Using Mixed-Ligand Metal−Organic Frameworks. Langmuir : the ACS journal of surfaces and colloids, vol.24, no.16, 8592-8598.

  20. Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I.. Progress in carbon dioxide separation and capture: A review. Journal of environmental sciences, vol.20, no.1, 14-27.

  21. Finsy, V., Ma, L., Alaerts, L., De Vos, D.E., Baron, G.V., Denayer, J.F.M.. Separation of CO2/CH4 mixtures with the MIL-53(Al) metal-organic framework. Microporous and mesoporous materials : the official journal of the International Zeolite Association, vol.120, no.3, 221-227.

  22. Cavenati, S., Grande, C. A., Rodrigues, A. E.. Removal of Carbon Dioxide from Natural Gas by Vacuum Pressure Swing Adsorption. Energy & fuels : an American Chemical Society journal, vol.20, no.6, 2648-2659.

  23. Ebner, Armin D., Ritter, James A.. State-of-the-art Adsorption and Membrane Separation Processes for Carbon Dioxide Production from Carbon Dioxide Emitting Industries. Separation science and technology, vol.44, no.6, 1273-1421.

  24. Bastin, L., Barcia, P. S., Hurtado, E. J., Silva, J. A. C., Rodrigues, A. E., Chen, B.. A Microporous Metal−Organic Framework for Separation of CO2/N2 and CO2/CH4 by Fixed-Bed Adsorption. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.112, no.5, 1575-1581.

  25. Xiang, Zhonghua, Peng, Xuan, Cheng, Xuan, Li, Xiujin, Cao, Dapeng. CNT@Cu3(BTC)2 and Metal-Organic Frameworks for Separation of CO2/CH4 Mixture. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.115, no.40, 19864-19871.

  26. Warmuziński, Krzysztof, Tańczyk, Marek. Multicomponent pressure swing adsorption Part I. Modelling of large-scale PSA installations. Chemical engineering and processing = Génie des procédés = Verfahrenstechnik, vol.36, no.2, 89-99.

  27. Tańczyk, Marek, Warmuziński, Krzysztof. Multicomponent pressure swing adsorption. Part II. Experimental verification of the model. Chemical engineering and processing = Génie des procédés = Verfahrenstechnik, vol.37, no.4, 301-315.

  28. Park, Jong-Ho, Kim, Jong-Nam, Cho, Soon-Haeng, Kim, Jong-Duk, Yang, Ralph T.. Adsorber dynamics and optimal design of layered beds for multicomponent gas adsorption. Chemical engineering science, vol.53, no.23, 3951-3963.

  29. Park, Jong‐Ho, Kim, Jong‐Nam, Cho, Soon‐Haeng. Performance analysis of four‐bed H2 PSA process using layered beds. AIChE journal, vol.46, no.4, 790-802.

  30. Nilchan, S.; Pantelides, C.C. etc. "On the Optimisation of Periodic Adsorption Processes." Adsorption : journal of the International Adsorption Society, v.4 no.2 (1998), pp. 113-147, doi:10.1023/A:1008823102106.

  31. Barg, C., Ferreira, J.M.P., Trierweiler, J.O., Secchi, A.R.. Simulation and optimization of an industrial PSA unit. Brazilian journal of chemical engineering : publication of the Brazilian Society of Chemical Engineering, vol.17, no.4, 695-704.

  32. Kostroski, K. P., Wankat, P. C.. High Recovery Cycles for Gas Separations by Pressure-Swing Adsorption. Industrial & engineering chemistry research, vol.45, no.24, 8117-8133.

  33. SIRCAR, S., GOLDEN, T.. Purification of Hydrogen by Pressure Swing Adsorption. Separation science and technology, vol.35, no.5, 667-687.

  34. Jiang, Ling, Biegler, Lorenz T., Fox, V. Grant. Simulation and optimization of pressure‐swing adsorption systems for air separation. AIChE journal, vol.49, no.5, 1140-1157.

  35. Jiang, Ling, Fox, V. Grant, Biegler, Lorenz T.. Simulation and optimal design of multiple‐bed pressure swing adsorption systems. AIChE journal, vol.50, no.11, 2904-2917.

  36. Jiang, Ling, Biegler, Lorenz T., Fox, V. Grant. Design and optimization of pressure swing adsorption systems with parallel implementation. Computers & chemical engineering, vol.29, no.2, 393-399.

  37. Ko, D., Siriwardane, R., Biegler, L. T.. Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration. Industrial & engineering chemistry research, vol.42, no.2, 339-348.

  38. Ko, D., Siriwardane, R., Biegler, L. T.. Optimization of Pressure Swing Adsorption and Fractionated Vacuum Pressure Swing Adsorption Processes for CO2 Capture. Industrial & engineering chemistry research, vol.44, no.21, 8084-8094.

  39. Nikolic, D., Giovanoglou, A., Georgiadis, M. C., Kikkinides, E. S.. Generic Modeling Framework for Gas Separations Using Multibed Pressure Swing Adsorption Processes. Industrial & engineering chemistry research, vol.47, no.9, 3156-3169.

  40. Agarwal, Anshul, Biegler, Lorenz T., Zitney, Stephen E.. Simulation and Optimization of Pressure Swing Adsorption Systems Using Reduced-Order Modeling. Industrial & engineering chemistry research, vol.48, no.5, 2327-2343.

  41. Hart, J., Battrum, M.J., Thomas, W.J.. Axial pressure gradients during the pressurization and depressurization steps of a PSA gas separation cycle. Gas separation & purification, vol.4, no.2, 97-102.

  42. Rodrigues, A.E., Loureiro, J.M., LeVan, M.D.. Simulated pressurization of adsorption beds. Gas separation & purification, vol.5, no.2, 115-124.

  43. Yang, Jaeyoung, Park, Min-Woo, Chang, Jay-Woo, Ko, Suk-Moon, Lee, Chang-Ha. Effects of pressure drop in a PSA process. Korean journal of chemical engineering, vol.15, no.2, 211-216.

  44. Sereno, Carlos, Rodrigues, Alirio. Can steady-state momentum equations be used in modelling pressurization of adsorption beds?. Gas separation & purification, vol.7, no.3, 167-174.

  45. Chahbani, M.H., Tondeur, D.. Pressure drop in fixed-bed adsorbers. Chemical engineering journal, vol.81, no.1, 23-34.

  46. Zwiebel, Imre. Fixed Bed Adsorption with Variable Gas Velocity Due to Pressure Drop. Industrial & engineering chemistry fundamentals, vol.8, no.4, 803-807.

  47. Sundaram, Narasimhan, Wankat, P.C.. Pressure drop effects in the pressurization and blowdown steps of pressure swing adsorption. Chemical engineering science, vol.43, no.1, 123-129.

  48. 10.1016/B978-0-444-53711-9.50126-7 Khajuria, H.Model-Based Design, Operation and Control of Pressure Swing Adsorption Systems. Ph.D. Dissertation,Imperial College,London, UK, 2011. 

  49. Ribeiro, Rui P., Sauer, Ticiane P., Lopes, Filipe V., Moreira, Regina F., Grande, Carlos A., Rodrigues, Alírio E.. Adsorption of CO2, CH4, and N2 in Activated Carbon Honeycomb Monolith. Journal of chemical and engineering data, vol.53, no.10, 2311-2317.

  50. Olajossy, A., Gawdzik, A., Budner, Z., Dula, J.. Methane Separation from Coal Mine Methane Gas by Vacuum Pressure Swing Adsorption. Chemical engineering research & design : transactions of the Institution of Chemical Engineers, vol.81, no.4, 474-482.

  51. 10.12691/ces-1-4-1 

  52. Gomes, Vincent G., Hassan, Mirza M.. Coalseam methane recovery by vacuum swing adsorption. Separation and purification technology, vol.24, no.1, 189-196.

  53. The Ergun Equation.https://en.wikipedia.org/wiki/Ergun_equation(accessed September 2015) . 

  54. Delgado, J.A., Rodrigues, A.E.. Analysis of the boundary conditions for the simulation of the pressure equalization step in PSA cycles. Chemical engineering science, vol.63, no.18, 4452-4463.

  55. Patel, M.Optimising Adsorption Process Design and Operation, AIChE Webinar, October 29, 2014. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로