$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

CFD modelling of entropy generation in turbulent pipe flow: Effects of temperature difference and swirl intensity

Applied thermal engineering, v.100, 2016년, pp.999 - 1006  

Saqr, K.M. ,  Shehata, A.I. ,  Taha, A.A. ,  Abo ElAzm, M.M.

Abstract AI-Helper 아이콘AI-Helper

This article extends the recent study by Saqr and Wahid (Applied Thermal Engineering 70 (2014) 486-493) on the criteria of heat transfer enhancement in swirl pipe flow based on the entropy generation minimization principle. The effects of wall-fluid temperature difference (ΔT) and swirl intens...

주제어

참고문헌 (56)

  1. Smith 1997 Thermal Design of Heat Exchangers: A Numerical Approach: Direct Sizing and Stepwise Rating 

  2. Renew. Sustain. Energy Rev Liu 19 64 2013 10.1016/j.rser.2012.11.021 A comprehensive review on passive heat transfer enhancements in pipe exchangers 

  3. Kreith 2010 Principles of Heat Transfer 

  4. J. Fluid Mech Kuehn 74 695 1976 10.1017/S0022112076002012 An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders 

  5. Comput. Methods Appl. Mech. Eng de Parias Neto 165 189 1998 10.1016/S0045-7825(98)00040-1 Finite-element simulation of laminar swirling decaying flow induced by means of a tangential inlet in an annulus 

  6. Heat Transf. Res Kuzma-Kichta 31 146 2000 Heat transfer intensification: a review 

  7. Appl. Therm. Eng Sivashanmugam 26 1990 2006 10.1016/j.applthermaleng.2006.01.008 Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with helical screw-tape inserts 

  8. Adv. Heat Transfer Manglik 36 183 2003 10.1016/S0065-2717(02)80007-7 Swirl flow heat transfer and pressure drop with twisted-tape inserts 

  9. Youchison 119 1999 Evaluation of helical wire inserts for CHF enhancement 

  10. J. Mech. Sci. Technol Nanan 28 4771 2014 10.1007/s12206-014-1044-z Heat transfer enhancement by helical screw tape coupled with rib turbulators 

  11. Int. J. Heat Fluid Fl Chang 16 78 1995 10.1016/0142-727X(94)00016-6 Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection 

  12. J. Fluid Mech Yajnik 60 665 1973 10.1017/S0022112073000406 Experiments on swirling turbulent flows. Part 1. Similarity in swirling flows 

  13. J. Fluid Mech Kitoh 225 445 1991 10.1017/S0022112091002124 Experimental study of turbulent swirling flow in a straight pipe 

  14. Appl. Therm. Eng Durmu 22 321 2002 10.1016/S1359-4311(01)00078-3 Investigation of heat transfer and pressure drop in a concentric heat exchanger with snail entrance 

  15. Energy Convers. Manag Yilmaz 44 283 2003 10.1016/S0196-8904(02)00053-5 Heat transfer and friction characteristics in decaying swirl flow generated by different radial guide vane swirl generators 

  16. Meccanica Ahmadvand 45 111 2010 10.1007/s11012-009-9228-9 An experimental study and CFD analysis towards heat transfer and fluid flow characteristics of decaying swirl pipe flow generated by axial vanes 

  17. Int. J. Heat Fluid Fl Bejan 8 258 1987 10.1016/0142-727X(87)90062-2 The thermodynamic design of heat and mass transfer processes and devices 

  18. Adv. Heat Transfer Bejan 15 1 1982 10.1016/S0065-2717(08)70172-2 Second-law analysis in heat transfer and thermal design 

  19. Int. J. Heat Mass Transf Ogulata 41 373 1998 10.1016/S0017-9310(97)00129-4 Experiments and entropy generation minimization analysis of a cross-flow heat exchanger 

  20. Int. J. Energy Res Ordonez 24 843 2000 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M Entropy generation minimization in parallel-plates counterflow heat exchangers 

  21. Int. J. Heat Fluid Fl Vargas 22 657 2001 10.1016/S0142-727X(01)00129-1 Thermodynamic optimization of finned crossflow heat exchangers for aircraft environmental control systems 

  22. Int. J. Energy Res Zimparov 26 675 2002 10.1002/er.810 Energy conservation through heat transfer enhancement techniques 

  23. Int. J. Heat Mass Transf Singh 53 4757 2010 10.1016/j.ijheatmasstransfer.2010.06.016 Entropy generation due to flow and heat transfer in nanofluids 

  24. J. Heat Transfer Ahmadi 133 021801 2011 10.1115/1.4002599 Cost and entropy generation minimization of a cross-flow plate fin heat exchanger using multi-objective genetic algorithm 

  25. Chin. Phys Lett Chen 56 449 2011 A comparison of optimization theories for energy conservation in heat exchanger groups 

  26. Prog. Energ. Combust Sieniutycz 29 193 2003 10.1016/S0360-1285(03)00020-0 Thermodynamic limits on production or consumption of mechanical energy in practical and industrial systems 

  27. J. Appl. Phys Bejan 79 1191 1996 10.1063/1.362674 Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes 

  28. Appl. Therm. Eng Yakut 24 2427 2004 10.1016/j.applthermaleng.2004.03.008 The effects of vortex characteristics on performance of coiled wire turbulators used for heat transfer augmentation 

  29. Int. J. Therm. Sci Kurtba 46 300 2007 10.1016/j.ijthermalsci.2006.06.003 Effect of propeller type swirl generators on the entropy generation and efficiency of heat exchangers 

  30. Exp. Heat Transfer Kurtba 27 472 2014 10.1080/08916152.2013.803175 Effect of swirl generator inserted into a tube on exergy transfer: decaying flow 

  31. Int. J. Exergy Bali 5 64 2008 10.1504/IJEX.2008.016013 Exergy analysis of heat transfer in a turbulent pipe flow by a decaying swirl generator 

  32. Int. Commun. Heat Mass Eldrainy 36 936 2009 10.1016/j.icheatmasstransfer.2009.06.013 CFD insight of the flow dynamics in a novel swirler for gas turbine combustors 

  33. Appl. Therm. Eng Saqr 70 486 2014 10.1016/j.applthermaleng.2014.05.059 Effects of swirl intensity on heat transfer and entropy generation in turbulent decaying swirl flow 

  34. Int. Commun. Heat Mass Rohani 39 681 2012 10.1016/j.icheatmasstransfer.2012.03.020 Effects of hydrogen addition on the structure and pollutant emissions of a turbulent unconfined swirling flame 

  35. Int. Commun. Heat Mass Eldrainy 38 1104 2011 10.1016/j.icheatmasstransfer.2011.05.017 Large eddy simulation and preliminary modeling of the flow downstream a variable geometry swirler for gas turbine combustors 

  36. Flow Turbul. Combust Rocklage-Marliani 70 43 2003 10.1023/B:APPL.0000004913.82057.81 Three-dimensional laser-doppler velocimeter measurements in swirling turbulent pipe flow 

  37. Comput. Fluids Shih 24 227 1995 10.1016/0045-7930(94)00032-T A new k-ε eddy-viscosity model for high Reynolds number turbulent flows - model development and validation 

  38. Eng. Appl. Comp. Fluid Drainy 3 562 2009 CFD analysis of incompressible turbulent swirling flow through zanker plate 

  39. Int. J. Hydrogen Energy Chen 35 12491 2010 10.1016/j.ijhydene.2010.08.048 Analysis of entropy generation in hydrogen-enriched ultra-lean counter-flow methane-air non-premixed combustion 

  40. Int. J. Heat Mass Transf Yilbas 42 4027 1999 10.1016/S0017-9310(99)00066-6 Second law analysis of a swirling flow in a circular duct with restriction 

  41. Appl. Math. Model Saqr 36 4652 2012 10.1016/j.apm.2011.11.082 Computational study of decaying annular vortex flow using the R ε/k-ε turbulence model 

  42. ANSYS 2006 FLUENT 6.3 User Guide in, ANSYS, Inc 

  43. Int. J. Heat Mass Transf Patankar 15 1787 1972 10.1016/0017-9310(72)90054-3 A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows 

  44. Timothy 1989 The design and application of upwind schemes on unstructured meshes 

  45. Comput. Methods Appl. Mech. Eng Launder 3 269 1974 10.1016/0045-7825(74)90029-2 The numerical computation of turbulent flows 

  46. Jixie Gongcheng Xuebao/J. Mech. Eng Chen 45 305 2009 10.3901/JME.2009.12.305 Numerical simulation of gas-particle two phase flow field for swirl burner 

  47. Int. J. Numer. Methods Fluids Guo 59 1285 2009 10.1002/fld.1872 3D numerical simulation of compressible swirling flow induced by means of tangential inlets 

  48. Chem. Eng. Res. Design Hreiz 89 2521 2011 10.1016/j.cherd.2011.05.001 Numerical investigation of swirling flow in cylindrical cyclones 

  49. Sharma 2014 Analysis of different radiation models in a swirl stabilized combustor 

  50. Usman 283 2012 Probability density function computations of a strongly swirling flame 

  51. Appl. Therm. Eng Cho 59 454 2013 10.1016/j.applthermaleng.2013.06.004 A numerical approach to reduction of NOx emission from swirl premix burner in a gas turbine combustor 

  52. Appl. Therm. Eng Miltner 89 1117 2015 10.1016/j.applthermaleng.2015.05.048 CFD simulation of straight and slightly swirling turbulent free jets using different RANS-turbulence models 

  53. Appl. Therm. Eng Wang 88 384 2015 10.1016/j.applthermaleng.2014.09.076 The application of exergy destruction minimization in convective heat transfer optimization 

  54. Appl. Therm. Eng Zhao 29 159 2009 10.1016/j.applthermaleng.2008.02.016 Thermal performance of a premixed impinging circular flame jet array with induced-swirl 

  55. J. Heat Transfer Bejan 101 718 1979 10.1115/1.3451063 A study of entropy generation in fundamental convective heat transfer 

  56. J. Fluid. Eng.-T. ASME Parchen 120 54 1998 10.1115/1.2819661 An experimental and numerical study of turbulent swirling pipe flows 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로