$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Soil radon measurements as a potential tracer of tectonic and volcanic activity 원문보기

Scientific reports, v.6, 2016년, pp.24581 -   

Neri, Marco (Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania) ,  Ferrera, Elisabetta (Dipartimento di Scienze Biologiche, Geologiche e Ambientali –) ,  Giammanco, Salvatore (Università) ,  Currenti, Gilda (di Catania. C.so Italia 57) ,  Cirrincione, Rosolino (Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania) ,  Patanè, Giuseppe (Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania) ,  Zanon, Vittorio (Dipartimento di Scienze Biologiche, Geologiche e Ambientali –)

Abstract AI-Helper 아이콘AI-Helper

In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-...

참고문헌 (51)

  1. Stranden E. , Kolstad A. K. & Lind B. The influence of moisture and temperature on radon exhalation . Radiation Protection Dosimetry 7 (1–4), 55 – 58 ( 1984 ). 

  2. King C.-H. , King B.-S. & Evans W. C. Spatial Radon anomalies on active faults in California . Appl. Geochem. 11 , 497 – 510 ( 1996 ). 

  3. Mazur D. , Janik M. , Loskiewicz J. , Olko P. & Swakon J. Measurements of Radon concentration in soil gas by CR-39 detectors . Radiat. Meas. 31 , 295 – 300 ( 1999 ). 

  4. Jonsson G. et al. Soil Radon levels measured with SSNTD’s and the soil radium content . Radiat. Meas. 31 , 291 – 294 ( 1999 ). 

  5. Choubey V. M. , Bist K. S. , Saini N. K. & Ramola R. C. Relation between soil-gas Radon variation and different lithotectonic units, Garhwal Himalya, India . Appl. Radiat. and Isot. 51 , 487 – 592 ( 1999 ). 

  6. Durrani S. A. Radon concentration values in the field: Correlation with underlying geology . Radiat. Meas. 31 (1–6), 271 – 276 ( 1999 ). 

  7. Vaupotič J. Indoor Radon in Slovenia . Nucl. Tecn. and Rad. Prot. 2 , 36 – 43 ( 2003 ). 

  8. Cigolini C. , Laiolo M. , Ulivieri G. , Coppola D. & Ripepe M. Radon mapping, automatic measurements and extremely high 222Rn emissions during the 2002–2007 eruptive scenarios at Stromboli volcano . J. Volcanol. Geotherm. Res. 256 , 49 – 65 , 10.1016/j.jvolgeores.2013.07.011 ( 2013 ). 

  9. Alparone S. , Behncke B. , Giammanco S. , Neri M. & Privitera E. Paroxysmal summit activity at Mt. Etna monitored through continuous soil radon measurements . Geophys. Res. Lett. 32 , L16307 , 10.1029/2005GL023352 ( 2005 ). 

  10. Morelli D. et al. Evidence of soil radon as tracer of magma uprising in Mt. Etna . Radiat. Meas. 41 , 721 – 725 ( 2006 ). 

  11. Giammanco S. , Sims K. W. W. & Neri M. Measurements of 220 Rn and 222 Rn and CO 2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): implications for gas transport and shallow ground fracture . Geochem. Geophys. Geosyst. 8 , Q10001 , 10.1029/2007GC001644 ( 2007 ). 

  12. Falsaperla S. et al. “Failed” eruptions revealed by the study of gas emission and volcanic tremor data at Mt. Etna, Italy . Int. J. Earth Sci. (Geol Rundsch) 103 , 297 – 313 , 10.1007/s00531-013-0964-7 ( 2014 ). 

  13. Neri M. et al. Continuous soil radon monitoring during the july 2006 Etna eruption . Geophys. Res. Lett. 33 , L24316 , 10.1029/2006GL028394 ( 2006 ). 

  14. Immè G. , La Delfa S. , Lo Nigro S. , Morelli D. & Patane G. Gas Radon emission related to geodynamic activity of Mt. Etna . Ann. Geophys. 48 , 65 – 71 ( 2005 ). 

  15. Immè G. , La Delfa S. , Lo Nigro S. , Morelli D. & Patane G. Soil Radon concentration and volcanic activity of Mt. Etna before and after the 2002 eruption . Radiat. Meas. 41 , 241 – 245 ( 2006 ). 

  16. Neri M. , Guglielmino F. & Rust D. Flank instability on Mount Etna: radon, radar interferometry and geodetic data from the southern boundary of the unstable sector . J. Geophys. Res. 112 , B04410 , 10.1029/2006JB004756 ( 2007 ). 

  17. La Delfa S. et al. Radon measurements in the SE and NE flank of Mt. Etna (Italy) . Radiat. Meas. 42 , 1404 – 1408 ( 2007 ). 

  18. Giammanco S. , Immè G. , Mangano G. , Morelli D. & Neri M. Comparison between different methodologies for detecting radon in soil along an active fault: The case of the Pernicana fault system, Mt. Etna (Italy) . Appl. Radiat. Isotopes 67 , 178 – 185 , 10.1016/j.apradiso.2008.09.007 ( 2009 ). 

  19. Siniscalchi A. et al. Insights into fluid circulation across the Pernicana fault (Mt. Etna, Italy) and implications for flank instability . J. Volcanol. Geotherm. Res. 193 , 137 – 142 , 10.1016/j.jvolgeores.2010.03.013 ( 2010 ). 

  20. Burton M. , Neri M. & Condarelli D. High spatial resolution radon measurements reveal hidden active faults on Mt. Etna . Geophys. Res. Lett. 31 (7) , L07618 ( 2004 ). 

  21. Bonforte A. et al. Soil gases and SAR data reveal hidden faults on the sliding flank of Mt. Etna (Italy), J. Volcanol. Geotherm. Res. 251 , 27 – 40 , 10.1016/j.jvolgeores.2012.08.010 ( 2013 ). 

  22. Neri M. , Acocella V. & Behncke B. The role of the Pernicana fault system in the spreading of Mt. Etna (italy) during the 2002–2003 eruption . Bull. Volcanol. 66 , 417 – 430 , 10.1007/s00445-003-0322-x ( 2004 ). 

  23. Alparone S. et al. Seismological features of the Pernicana–Provenzana Fault System (Mt. Etna, Italy) and implications for the dynamics of northeastern flank of the volcano . J. Volcanol Geoth. Res. 151 , 16 – 26 , 10.1016/j.jvolgeores.2012.03.010 ( 2012 ). 

  24. Ruch J. et al. Seismo-tectonic behavior of the Pernicana Fault System (Mt Etna): A gauge for volcano flank instability? J. Geophys. Res. Solid Earth. 118 , 4398 – 4409 , 10.1002/jgrb.50281 ( 2013 ). 

  25. Neri M. et al. Structural analysis of the eruptive fissures at Mount Etna (Italy) . Ann. Geophys. 54 , 5, 464 – 479 , 10.4401/ag-5332 ( 2011 ). 

  26. Lanzafame G. , Leonardi A. , Neri M. & Rust D. Late overthrust of the Appenine - Maghrebian Chain at the NE periphery of Mt. Etna, Sicily. C. R. Acad. Sci. Paris , t. 324 , serie II a, 325 – 332 ( 1997 ). 

  27. Branca S. , Coltelli M. & Groppelli G. Geological evolution of a complex basaltic stratovolcano: Mount Etna, Italy, Ital . J. Geosci. 130 (3) , 306 – 317 , 10.3301/IJG.2011.13 ( 2011 ). 

  28. Acocella V. & Neri M. Structural features of an active strike-slip fault on the sliding flank of Mt. Etna (Italy) . J. Structural Geology 27 (2) , 343 – 355 , 10.1016/j.jsg.2004.07.006 ( 2005 ). 

  29. Currenti G. et al. Modeling of ALOS and COSMO-SkyMed satellite data at Mt Etna: Implications on relation between seismic activation of the Pernicana fault system and volcanic unrest, Remote Sens. Environ. 125 , 64 – 72 , 10.1016/j.rse.2012.07.008 ( 2012 ). 

  30. Alparone S. , Bonaccorso A. , Bonforte A. & Currenti G. Long-term stress-strain analysis of volcano flank instability: The eastern sector of Etna from 1980 to 2012 . J. Geophys. Res. Solid Earth 118 , 10.1002/jgrb.50364 ( 2013 ). 

  31. Vicari A. et al. Near‐real‐time forecasting of lava flow hazards during the 12–13 January 2011 Etna eruption . Geophys. Res. Lett. 38 , L13317 , 10.1029/2011GL047545 ( 2011 ). 

  32. Del Negro C. et al. Lava flow hazards at Etna volcano: constraints imposed by eruptive history and numerical simulations, Sci. Rep. 3 , 3493 , 10.1038/srep03493 ( 2013 ). 24336484 

  33. Behncke B. et al. The 2011–2012 summit activity of Mount Etna: Birth, growth and products of the new SE crater . J. Volcanol. Geotherm. Res. 270 , 10 – 21 ( 2014 ). 

  34. Falsaperla S. & Neri M. Seismic footprints of shallow dyke propagation at Etna, Italy . Sci. Rep. 5 , 11908 , 10.1038/srep11908 ( 2015 ). 26173557 

  35. Hinkle M. E. Factors affecting concentrations of helium and carbon dioxide in soil gases . In: E. M. Durance (Ed), Geochemistry of gaseous elements and compounds. Theophrastus Publications SA, Athens, pp. 421 – 447 ( 1990 ). 

  36. Klusman R. W. & Jaacks J. A. Environmental influences upon mercury, radon and helium concentrations in soil gases at a site near Denver, Colorado . J. Geochem. Explor. 27 , 259 – 280 ( 1987 ). 

  37. Pinault J. L. & Baubron J. C. Signal processing of soil gas radon, atmospheric pressure, moisture and soil temperature data: a new approach for radon concentration modelling . J. Geophys. Res. 101 (B2), 3157 – 3171 ( 1996 ). 

  38. Toutain J. P. & Baubron J. C. Gas geochemistry and seismotectonics: a review . Tectonophys. 304 , 1 – 27 ( 1999 ). 

  39. Wilcoxon F. Individual comparison by ranking methods . Biometrics Bull 1 , 80 – 83 ( 1945 ). 

  40. Garside M. J. , Best subset search . Appl. Stat. 20 112 – 115 ( 1971 ). 

  41. Tennant C. B. & White M. L. Study of the distribution of some geochemical data . Economic Geology 54 , 538 – 50 ( 1959 ). 

  42. Siniscalchi A. et al. Flank instability structure of Mt. Etna inferred by a magnetotelluric survey . J. Geophys. Res. 117 , B03216 , 10.1029/2011JB008657 ( 2012 ). 

  43. Branca S. & Ferrara V. The morphostructural setting of Mount Etna sedimentary basement (Italy): Implications for the geometry and volume of the volcano and its flank instability . Tectonophys 586 , 46 – 64 , 10.1016/j.tecto.2012.11.011 ( 2013 ). 

  44. Etiope G. & Martinelli G. Migration of carrier and trace gases in the geosphere: an overview . Phys Earth Planet Interiors 129 . 185 – 204 ( 2002 ). 

  45. Allard P. et al. Eruptive and diffuse emissions of CO 2 from Mount Etna . Nature 351 , 387 – 391 ( 1991 ). 

  46. Giammanco S. , Gurrieri S. & Valenza M. Soil CO 2 degassing on Mt. Etna (Sicily) during the period 1989–1993: Discrimination between climatic and volcanic influences . Bull. Volcanol. 57 , 52 – 60 ( 1995 ). 

  47. Giammanco S. & Bonfanti P. Cluster analysis of soil CO 2 data from Mt. Etna (Italy) reveals volcanic influences on temporal and spatial patterns of degassing . Bull. Volcanol. 71 , 201 – 218 , 10.1007/s00445-008-0218-x ( 2009 ). 

  48. Grammakov A. G. On the influence of same factors in the spreading of radioactive emanations under natural conditions . Zhur. Geofiziki 6 , 123 – 148 ( 1936 ). 

  49. Bizzarri A. Effects of permeability and porosity evolution on simulated earthquakes, J. Structural Geology 38 , 243 – 253 , 10.1016/j.jsg.2011.07.009 ( 2012 ). 

  50. Wang X. , Li Y. , Du J. & Zhou X. Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area, North China . Radiat. Meas. 60 , 8 – 14 ( 2014 ). 

  51. Yasuoka Y. et al. Preseismic changes in atmospheric radon concentration and crustal strain . Phys. Chem. Earth 34 , 431 – 434 ( 2009 ). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로