$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy

Nature nanotechnology, v.11 no.6, 2016년, pp.566 - 572  

Lee, Hyunjae (Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Republic of Korea) ,  Choi, Tae Kyu (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742, Republic of Korea) ,  Lee, Young Bum (Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Republic of Korea) ,  Cho, Hye Rim (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742, Republic of Korea) ,  Ghaffari, Roozbeh (Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Republic of Korea) ,  Wang, Liu (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742, Republic of Korea) ,  Choi, Hyung Jin (Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Republic of Korea) ,  Chung, Taek Dong (Department of Radiology, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea) ,  Lu, Nanshu (MC10, 10 Maguire Rd., Lexington, Massachusetts 0214) ,  Hyeon, Taeghwan ,  Choi, Seung Hong ,  Kim, Dae-Hyeong

Abstract AI-Helper 아이콘AI-Helper

Owing to its high carrier mobility, conductivity, flexibility and optical transparency, graphene is a versatile material in micro- and macroelectronics. However, the low density of electrochemically active defects in graphene synthesized by chemical vapour deposition limits its application in biosen...

참고문헌 (46)

  1. Nature KS Kim 457 706 2009 10.1038/nature07719 Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710 (2009). 

  2. Nature Nanotech. S Bae 5 574 2010 10.1038/nnano.2010.132 Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574-578 (2010). 

  3. Science C Lee 321 385 2008 10.1126/science.1157996 Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008). 

  4. Nature Nanotech F Schwierz 5 487 2010 10.1038/nnano.2010.89 Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487-496 (2010). 

  5. Nature Photon F Bonaccorso 4 611 2010 10.1038/nphoton.2010.186 Bonaccorso, F., Sun, Z. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611-622 (2010). 

  6. Adv. Mater Q Sun 26 4735 2014 10.1002/adma.201400918 Sun, Q. et al. Transparent, low-power pressure sensor matrix based on coplanar-gate graphene transistors. Adv. Mater. 26, 4735-4740 (2014). 

  7. Adv. Mater WH Lee 23 1752 2011 10.1002/adma.201004099 Lee, W. H. et al. Transparent flexible organic transistors based on monolayer graphene electrodes on plastic. Adv. Mater. 23, 1752-1756 (2011). 

  8. Acc. Chem. Res. C Chung 46 2211 2011 10.1021/ar300159f Chung, C. et al. Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46, 2211-2224 (2011). 

  9. Adv. Funct. Mater LT Duy 25 883 2015 10.1002/adfm.201401992 Duy, L. T. et al. High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars. Adv. Funct. Mater. 25, 883-890 (2015). 

  10. Small D-J Kim 9 3352 2013 10.1002/smll.201203245 Kim, D.-J. et al. Electrical graphene aptasensor for ultra-sensitive detection of anthrax toxin with amplified signal transduction. Small 9, 3352-3360 (2013). 

  11. Nature Commun D-W Park 5 5258 2014 10.1038/ncomms6258 Park, D.-W. et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nature Commun. 5, 5258 (2014). 

  12. Nature Photon T-H Han 6 105 2012 10.1038/nphoton.2011.318 Han, T.-H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photon. 6, 105-110 (2012). 

  13. Nature Commun L Xu 5 3329 2014 10.1038/ncomms4329 Xu, L. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nature Commun. 5, 3329 (2014). 

  14. Analyst T Guinovart 138 7031 2013 10.1039/c3an01672b Guinovart, T. et al. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 138, 7031-7038 (2013). 

  15. Anal. Chem W Jia 85 6553 2013 10.1021/ac401573r Jia, W. et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85, 6553-6560 (2013). 

  16. Anal. Chem AJ Bandodkar 87 394 2015 10.1021/ac504300n Bandodkar, A. J. et al. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87, 394-398 (2015). 

  17. Nature Nanotech BC-K Tee 7 825 2012 10.1038/nnano.2012.192 Tee, B. C.-K. et al. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotech. 7, 825-832 (2012). 

  18. Nature Commun. G Schwartz 4 1859 2013 10.1038/ncomms2832 Schwartz, G. et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Commun. 4, 1859 (2013). 

  19. Science IR Minev 347 159 2015 10.1126/science.1260318 Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159-163 (2015). 

  20. Adv. Funct. Mater AP Gerratt 25 2287 2015 10.1002/adfm.201404365 Gerratt, A. P. et al. Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 25, 2287-2295 (2015). 

  21. Nature Nanotech D Son 9 397 2014 10.1038/nnano.2014.38 Son, D. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature Nanotech. 9, 397-404 (2014). 

  22. Nature Commun J Kim 5 5747 2014 10.1038/ncomms6747 Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nature Commun. 5, 5747 (2014). 

  23. Diabetes Technol. Ther J Moyer 14 398 2012 10.1089/dia.2011.0262 Moyer, J., Wilson, D., Finkelshtein, I., Wong, B. & Potts, R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther. 14, 398-402 (2012). 

  24. J. Diabetes Sci. Tehcnol K Sakaguchi 7 678 2013 10.1177/193229681300700313 Sakaguchi, K. et al. Evaluation of a minimally invasive system for measuring glucose area under the curve during oral glucose tolerance tests: usefulness of sweat monitoring for precise measurement. J. Diabetes Sci. Tehcnol. 7, 678-688 (2013). 

  25. Conf. Proc. IEEE Eng. Med. Biol. Soc O Olarte 2013 1462 2013 Olarte, O., Chilo, J., Pelegri-Sebastia, J., Barbé, K. & Moer, W. V. Glucose detection in human sweat using an electronic nose. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 1462-1465 (2013). 

  26. Nature Med SP Sullivan 16 915 2010 10.1038/nm.2182 Sullivan, S. P. et al. Dissolving polymer micro-needle patches for influenza vaccination. Nature Med. 16, 915-920 (2010). 

  27. Adv. Mater SP Sullivan 20 933 2008 10.1002/adma.200701205 Sullivan, S. P. et al. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv. Mater. 20, 933-938 (2008). 

  28. Angew. Chem. Int. Ed DC Hyun 53 3780 2014 10.1002/anie.201305201 Hyun, D. C. et al. Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks. Angew. Chem. Int. Ed. 53, 3780-3795 (2014). 

  29. Science S Xu 344 70 2014 10.1126/science.1250169 Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70-74 (2014). 

  30. Nature Commun K-I Jang 6 6566 2015 10.1038/ncomms7566 Jang, K.-I. et al. Soft network composite materials with deterministic and bio-inspired designs. Nature Commun. 6, 6566 (2015). 

  31. Appl. Phys. Lett SP Lacour 82 2404 2003 10.1063/1.1565683 Lacour, S. P. et al. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404-2406 (2003). 

  32. Adv. Mater Q Cao 18 304 2006 10.1002/adma.200501740 Cao, Q. et al. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 18, 304-309 (2006). 

  33. Nature Commun CG Guo 5 3121 2014 10.1038/ncomms4121 Guo, C. G. et al. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nature Commun. 5, 3121 (2014). 

  34. Adv. Mater H Vandeparre 25 3117 2013 10.1002/adma.201300587 Vandeparre, H. et al. Localization of folds and cracks in thin metal films coated on flexible elastomer foams. Adv. Mater. 25, 3117-3121 (2013). 

  35. Nature M Kaltenbrunner 499 458 2013 10.1038/nature12314 Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458-463 (2013). 

  36. Nature Mater T Sekitani 9 1015 2010 10.1038/nmat2896 Sekitani, T., Zschieschang, U., Klauk, H. & Someya, T. Flexible organic transistors and circuits with extreme bending stability. Nature Mater. 9, 1015-1022 (2010). 

  37. Science T Sekitani 326 1516 2009 10.1126/science.1179963 Sekitani, T. et al. Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516-1519 (2009). 

  38. N. Engl. J. Med F Ismail-Beigi 366 1319 2012 10.1056/NEJMcp1013127 Ismail-Beigi, F. Glycemic management of type 2 diabetes mellitus. N. Engl. J. Med. 366, 1319-1327 (2012). 

  39. J. Am. Med. Assoc M Hallett 266 1115 1991 10.1001/jama.1991.03470080085035 Hallett, M. Classification and treatment of tremor. J. Am. Med. Assoc. 266, 1115-1117 (1991). 

  40. N. Engl. J. Med CJ Bailey 334 574 1996 10.1056/NEJM199602293340906 Bailey, C. J., Path, M. R. C. & Turner, R. C. Metformin. N. Engl. J. Med. 334, 574-579 (1996). 

  41. Biomaterials JW Lee 29 2113 2008 10.1016/j.biomaterials.2007.12.048 Lee, J. W., Park, J.-H. & Prausnitz, M. R. Dissolving microneedles for transdermal drug delivery. Biomaterials 29, 2113-2124 (2008). 

  42. Mol. Pharm JS Kochhar 10 4272 2013 10.1021/mp400359w Kochhar, J. S. et al. Microneedle integrated transdermal patch for fast onset and sustained delivery of lidocaine. Mol. Pharm. 10, 4272-4280 (2013). 

  43. J. Mater. Chem. B B Cai 2 5992 2014 10.1039/C4TB00764F Cai, B., Xia, W., Bredenberg, S. & Engqvist, H. Self-setting bioceramic microscopic protrusions for transdermal drug delivery. J. Mater. Chem. B 2, 5992-5998 (2014). 

  44. Scarbrough, C. A., Scarbrough, S. S. & Shubrook, J. Transdermal delivery of metformin. US patent 13/504,799 (2012). 

  45. Nature Biotechnol. MR Prausnitz 26 1261 2008 10.1038/nbt.1504 Prausnitz, M. R. & Langer, R. Transdermal drug delivery. Nature Biotechnol. 26, 1261-1268 (2008). 

  46. N. Engl. J. Med WC Knowler 346 393 2002 10.1056/NEJMoa012512 Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393-403 (2002). 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로