$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions 원문보기

Environmental science & technology, v.50 no.13, 2016년, pp.6846 - 6855  

Tong, Tiezheng (Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286,) ,  Elimelech, Menachem (Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286,)

Abstract AI-Helper 아이콘AI-Helper

Zero liquid discharge (ZLD)a wastewater management strategy that eliminates liquid waste and maximizes water usage efficiency  has attracted renewed interest worldwide in recent years. Although implementation of ZLD reduces water pollution and augments water supply, the technology is...

참고문헌 (99)

  1. Hoekstra, Arjen Y.. Water scarcity challenges to business. Nature climate change, vol.4, no.5, 318-320.

  2. V철r철smarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. Reidy, Davies, P. M.. Global threats to human water security and river biodiversity. Nature, vol.467, no.7315, 555-561.

  3. Grant, Stanley B., Saphores, Jean-Daniel, Feldman, David L., Hamilton, Andrew J., Fletcher, Tim D., Cook, Perran L. M., Stewardson, Michael, Sanders, Brett F., Levin, Lisa A., Ambrose, Richard F., Deletic, Ana, Brown, Rebekah, Jiang, Sunny C., Rosso, Diego, Cooper, William J., Marusic, Ivan. Taking the “Waste” Out of “Wastewater” for Human Water Security and Ecosystem Sustainability. Science, vol.337, no.6095, 681-686.

  4. Schwarzenbach, René P., Egli, Thomas, Hofstetter, Thomas B., von Gunten, Urs, Wehrli, Bernhard. Global Water Pollution and Human Health. Annual review of environment and resources, vol.35, 109-136.

  5. Oren, Y., Korngold, E., Daltrophe, N., Messalem, R., Volkman, Y., Aronov, L., Weismann, M., Bouriakov, N., Glueckstern, P., Gilron, J.. Pilot studies on high recovery BWRO-EDR for near zero liquid discharge approach. Desalination, vol.261, no.3, 321-330.

  6. The global push for zero.http://www.waterworld.com/articles/wwi/print/volume-30/issue-1/technology-case-studies/the-global-push-for-zero.html(accessed June 6 2016) . 

  7. From zero to hero - the rise of ZLD.https://www.globalwaterintel.com/global-water-intelligence-magazine/10/12/market-insight/from-zero-to-hero-the-rise-of-zld(accessed June 6 2016) . 

  8. Elimelech, Menachem, Phillip, William A.. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science, vol.333, no.6043, 712-717.

  9. Water Sci. Technol. Durham B. 97 3 4 2003 

  10. Heins, W., Schooley, K.. Achieving Zero Liquid Discharge in SAGD Heavy Oil Recovery. Journal of Canadian petroleum technology, vol.43, no.8,

  11. Survey of High-Recovery and Zero Liquid Discharge Technologies for Water Utilities Mickley M. 2008 

  12. Zero liquid discharge - A real solution?http://chinawaterrisk.org/resources/analysis-reviews/zero-liquid-discharge-a-real-solution/(accessed June 6 2016) . 

  13. Aquatech secures order for FGD waste water treatment ZLD.http://www.wateronline.com/doc/aquatech-secures-order-for-fgd-waste-water-tr-0001(accessed June 6 2016) . 

  14. U.S. Environmental Protection Agency. Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category; Final Rule; 40 CFR Part 423, 2015. 

  15. Technical Development Document for the Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category 2015 

  16. Al-Karaghouli, A., Kazmerski, L.L.. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable & sustainable energy reviews, vol.24, 343-356.

  17. Brady, Patrick V., Kottenstette, Richard J., Mayer, Thomas M., Hightower, Mike M.. Inland Desalination: Challenges and Research Needs : Inland Desalination. Journal of contemporary water research & education, vol.132, no.1, 46-51.

  18. 10.1080/19443994.2014.984927 

  19. J. Am. Water Works Assoc. Bond R. 76 100 9 2008 10.1002/j.1551-8833.2008.tb09722.x 

  20. Evaluation and Selection of Available Processes for a Zero-Liquid Discharge System for the Perris, California, Ground Water Basin 2008 

  21. Zero Liquid Discharge for Inland Desalination Bond R. 2007 

  22. Demonstration of Membrane Zero Liquid Discharge for Drinking Water Systems - A Literature Review Burbano A. 2012 

  23. The State Council, the People’s Republic of China. China announces action plan to tackle water pollution.http://english.gov.cn/policies/latest_releases/2015/04/16/content_281475090170164.htm(accessed June 6 2016) . 

  24. Jiang, Y.. China's water security: Current status, emerging challenges and future prospects. Environmental science & policy, vol.54, 106-125.

  25. China’s Power Utilities in Hot Water: Executive Summary 2013 

  26. Membrane Technology 2 2014 11 2014 

  27. Xie, K., Li, W., Zhao, W.. Coal chemical industry and its sustainable development in China. Energy : technologies, resources, reserves, demands, impact, conservation, management, policy, vol.35, no.11, 4349-4355.

  28. Coal-to-chemicals an emerging opportunity in China.http://usedtouseful.com/post/108284189605/coal-to-chemicals-an-emerging-opportunity-in-china(accessed June 6 2016) . 

  29. Zero liquid discharge, membrane hybrid excels in China.http://www.waterworld.com/articles/wwi/print/volume-26/issue-4/editorial-focus/sludge-processing/zero-liquid-discharge-membrane.html(accessed June 6 2016) . 

  30. Protecting China’s water supply.http://www.wwdmag.com/industrial/protecting-china%E2%80%99s-water-supply(accessed June 6 2016) . 

  31. Aquatech awarded zero liquid discharge project for coal-to-liquids plant in China.http://finance.yahoo.com/news/aquatech-awarded-zero-liquid-discharge-124000102.html(accessed June 6 2016) . 

  32. Mongolia coal to chemicals project to reuse wastewater using Aquatech’s ZLD.http://www.waterworld.com/articles/wwi/2015/11/mongolia-coal-to-chemicals-project-to-reuse-wastewater-using-aquatech-s-zld.html(accessed June 6 2016) . 

  33. Para-xylene plants face uphill struggle for acceptance in China.http://www.rsc.org/chemistryworld/2014/04/para-xylene-px-plants-face-continued-opposition-china(accessed June 6 2016) . 

  34. Protest stops China sewage pipeline project.http://www.cnn.com/2012/07/28/world/asia/china-sewage-pipeline/(accessed June 6 2016) . 

  35. India uses zero liquid discharge (ZLD) to clean the Ganges River.http://inspiredeconomist.com/2015/01/14/india-uses-zld-ganges-river/(accessed June 6 2016) . 

  36. Environment (Protection) - Amendment Rules. Government of India, Ministry of Environment, Forest & Climate Change, Notification, 2015.http://www.moef.nic.in/sites/default/files/Effluents%20from%20textile%20Industry.PDF(accessed June 6 2016) . 

  37. Government of India rolls out ‘ZLD’ norms for textile industry.http://news.apparelresources.com/sustainability-news/government-of-india-rolls-out-zld-norms-for-textile-industry/(accessed June 6 2016) . 

  38. Vishnu, G., Palanisamy, S., Joseph, Kurian. Assessment of fieldscale zero liquid discharge treatment systems for recovery of water and salt from textile effluents. Journal of cleaner production, vol.16, no.10, 1081-1089.

  39. Frost & Sullivan. Outlook on ZeroLiquid Discharge (ZLD)Market in India; (2013.http://cds.frost.com/p/67599/#!/nts/c?id=9835-00-59-00-00(accessed June 62016). 

  40. Ghaffour, N., Missimer, T.M., Amy, G.L.. Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination, vol.309, 197-207.

  41. Getting to Zero Discharge: How to Recycle That Last Bit of Really Bad Wastewater Bostjancic J. 2013 

  42. Shaffer, Devin L., Arias Chavez, Laura H., Ben-Sasson, Moshe, Romero-Vargas Castrillón, Santiago, Yip, Ngai Yin, Elimelech, Menachem. Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers, Technologies, and Future Directions. Environmental science & technology, vol.47, no.17, 9569-9583.

  43. McGinnis, R.L., Hancock, N.T., Nowosielski-Slepowron, M.S., McGurgan, G.D.. Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines. Desalination, vol.312, 67-74.

  44. 10.1016/S1871-2711(09)00211-6 

  45. Prihasto, N., Liu, Q.F., Kim, S.H.. Pre-treatment strategies for seawater desalination by reverse osmosis system. Desalination, vol.249, no.1, 308-316.

  46. Loganathan, K., Chelme-Ayala, P., Gamal El-Din, M.. Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge. Journal of environmental management, vol.165, 213-223.

  47. Subramani, A., Jacangelo, J.G.. Treatment technologies for reverse osmosis concentrate volume minimization: A review. Separation and purification technology, vol.122, 472-489.

  48. Mukhopadhyay, D.Method and apparatus for high efficiency reverse osmosis operation. U.S. Patent 6537456 B2, March 25, 2003. 

  49. Aquatech awarded zero liquid discharge contract.http://www.wateronline.com/doc/aquatech-awarded-zero-liquid-discharge-contra-0001(accessed June 6 2016) . 

  50. Xu, Tongwen, Huang, Chuanhui. Electrodialysis‐based separation technologies: A critical review. AIChE journal, vol.54, no.12, 3147-3159.

  51. Strathmann, H.. Electrodialysis, a mature technology with a multitude of new applications. Desalination, vol.264, no.3, 268-288.

  52. Korngold, E., Aronov, L., Daltrophe, N.. Electrodialysis of brine solutions discharged from an RO plant. Desalination, vol.242, no.1, 215-227.

  53. Loganathan, Kavithaa, Chelme-Ayala, Pamela, Gamal El-Din, Mohamed. Treatment of basal water using a hybrid electrodialysis reversal–reverse osmosis system combined with a low-temperature crystallizer for near-zero liquid discharge. Desalination, vol.363, 92-98.

  54. Turek, Marian, Dydo, Piotr, Klimek, Romuald. Salt production from coal-mine brine in ED–evaporation–crystallization system. Desalination, vol.184, no.1, 439-446.

  55. Turek, Marian. Electrodialytic desalination and concentration of coal-mine brine. Desalination, vol.162, 355-359.

  56. McGovern, R.K., Weiner, A.M., Sun, L., Chambers, C.G., Zubair, S.M., Lienhard V, J.H.. On the cost of electrodialysis for the desalination of high salinity feeds. Applied energy, vol.136, 649-661.

  57. Turek, Marian. Cost effective electrodialytic seawater desalination. Desalination, vol.153, no.1, 371-376.

  58. Wang, Meng, Xing, Hong-bo, Jia, Yu-xiang, Ren, Qing-chun. A zero-liquid-discharge scheme for vanadium extraction process by electrodialysis-based technology. Journal of hazardous materials, vol.300, 322-328.

  59. Shaffer, D.L., Werber, J.R., Jaramillo, H., Lin, S., Elimelech, M.. Forward osmosis: Where are we now?. Desalination, vol.356, 271-284.

  60. Cath, Tzahi Y., Childress, Amy E., Elimelech, Menachem. Forward osmosis: Principles, applications, and recent developments. Journal of membrane science, vol.281, no.1, 70-87.

  61. McGinnis, Robert L., Elimelech, Menachem. Energy requirements of ammonia–carbon dioxide forward osmosis desalination. Desalination, vol.207, no.1, 370-382.

  62. McCutcheon, Jeffrey R., McGinnis, Robert L., Elimelech, Menachem. A novel ammonia—carbon dioxide forward (direct) osmosis desalination process. Desalination, vol.174, no.1, 1-11.

  63. Gingerich, Daniel B., Mauter, Meagan S.. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation. Environmental science & technology, vol.49, no.14, 8297-8306.

  64. Zhou, Xingshi, Gingerich, Daniel B., Mauter, Meagan S.. Water Treatment Capacity of Forward-Osmosis Systems Utilizing Power-Plant Waste Heat. Industrial & engineering chemistry research, vol.54, no.24, 6378-6389.

  65. Zhu, Jialing, Hu, Kaiyong, Lu, Xinli, Huang, Xiaoxue, Liu, Ketao, Wu, Xiujie. A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy : technologies, resources, reserves, demands, impact, conservation, management, policy, vol.93, no.1, 466-483.

  66. Lund, John W., Freeston, Derek H., Boyd, Tonya L.. Direct application of geothermal energy: 2005 Worldwide review. Geothermics, vol.34, no.6, 691-727.

  67. Changxing power plant debuts the world’s first forward osmosis-based zero liquid discharge application.http://www.wateronline.com/doc/changxing-power-plant-debuts-the-world-s-first-forward-osmosis-based-zero-liquid-discharge-application-0001(accessed June 6 2016) . 

  68. Camacho, Lucy, Dumée, Ludovic, Zhang, Jianhua, Li, Jun-de, Duke, Mikel, Gomez, Juan, Gray, Stephen. Advances in Membrane Distillation for Water Desalination and Purification Applications. Water, vol.5, no.1, 94-196.

  69. Alklaibi, A.M., Lior, Noam. Membrane-distillation desalination: Status and potential. Desalination, vol.171, no.2, 111-131.

  70. Lawson, K.W., Lloyd, D.R.. Membrane distillation. Journal of membrane science, vol.124, no.1, 1-25.

  71. Curcio, Efrem, Drioli, Enrico. Membrane Distillation and Related Operations—A Review. Separation and purification reviews, vol.34, no.1, 35-86.

  72. Meindersma, G.W., Guijt, C.M., de Haan, A.B.. Desalination and water recycling by air gap membrane distillation. Desalination, vol.187, no.1, 291-301.

  73. Tijing, L.D., Choi, J.S., Lee, S., Kim, S.H., Shon, H.K.. Recent progress of membrane distillation using electrospun nanofibrous membrane. Journal of membrane science, vol.453, 435-462.

  74. Subramani, A., Jacangelo, J.G.. Emerging desalination technologies for water treatment: A critical review. Water research, vol.75, 164-187.

  75. Lin, S., Yip, N.Y., Elimelech, M.. Direct contact membrane distillation with heat recovery: Thermodynamic insights from module scale modeling. Journal of membrane science, vol.453, 498-515.

  76. Al-Obaidani, S., Curcio, E., Macedonio, F., Di Profio, G., Al-Hinai, H., Drioli, E.. Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation. Journal of membrane science, vol.323, no.1, 85-98.

  77. Duong, H.C., Cooper, P., Nelemans, B., Cath, T.Y., Nghiem, L.D.. Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination. Desalination, vol.374, 1-9.

  78. Alkhudhiri, Abdullah, Darwish, Naif, Hilal, Nidal. Membrane distillation: A comprehensive review. Desalination, vol.287, 2-18.

  79. ZHANG, Wenqi, MA, Jun, YANG, Shidong, ZHANG, Tao, LI, Yongfeng. Pretreatment of Coal Gasification Wastewater by Acidification Demulsion. Chinese journal of chemical engineering = 中國化學工程學報 (英文版), vol.14, no.3, 398-401.

  80. Simate, G.S., Cluett, J., Iyuke, S.E., Musapatika, E.T., Ndlovu, S., Walubita, L.F., Alvarez, A.E.. The treatment of brewery wastewater for reuse: State of the art. Desalination, vol.273, no.2, 235-247.

  81. El-Bourawi, M.S., Ding, Z., Ma, R., Khayet, M.. A framework for better understanding membrane distillation separation process. Journal of membrane science, vol.285, no.1, 4-29.

  82. Martinetti, C.R., Childress, A.E., Cath, T.Y.. High recovery of concentrated RO brines using forward osmosis and membrane distillation. Journal of membrane science, vol.331, no.1, 31-39.

  83. Tufa, R., Curcio, E., Brauns, E., van Baak, W., Fontananova, E., Di Profio, G.. Membrane Distillation and Reverse Electrodialysis for Near-Zero Liquid Discharge and low energy seawater desalination. Journal of membrane science, vol.496, 325-333.

  84. Younos, Tamim. Environmental Issues of Desalination : Environmental Issues. Journal of contemporary water research & education, vol.132, no.1, 11-18.

  85. Zhang, Yang, Ghyselbrecht, Karel, Vanherpe, Ruben, Meesschaert, Boudewijn, Pinoy, Luc, Van der Bruggen, Bart. RO concentrate minimization by electrodialysis: Techno-economic analysis and environmental concerns. Journal of environmental management, vol.107, 28-36.

  86. Stokes, Jennifer R., Horvath, Arpad. Energy and Air Emission Effects of Water Supply. Environmental science & technology, vol.43, no.8, 2680-2687.

  87. U.S. Energy Information Administration. How much carbon dioxide is produced per kilowatthour when generating electricity with fossil fuels?http://www.eia.gov/tools/faqs/faq.cfm?id=74&t=11(accessed June 6 2016) . 

  88. Cook, Benjamin I., Ault, Toby R., Smerdon, Jason E.. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Science advances, vol.1, no.1, e1400082-.

  89. Zhang, Chao, Zhong, Lijin, Fu, Xiaotian, Wang, Jiao, Wu, Zhixuan. Revealing Water Stress by the Thermal Power Industry in China Based on a High Spatial Resolution Water Withdrawal and Consumption Inventory. Environmental science & technology, vol.50, no.4, 1642-1652.

  90. Jiang, YanLing, Chen, YuanSheng, Younos, Tamim, Huang, HeQing, He, JianPing. Urban Water Resources Quota Management: The Core Strategy for Water Demand Management in China. Ambio, vol.39, no.7, 467-475.

  91. Fritzmann, C., Lowenberg, J., Wintgens, T., Melin, T.. State-of-the-art of reverse osmosis desalination. Desalination, vol.216, no.1, 1-76.

  92. Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B., Moulin, P.. Reverse osmosis desalination: Water sources, technology, and today's challenges. Water research, vol.43, no.9, 2317-2348.

  93. Lee, Sangyoup, Cho, Jaeweon, Elimelech, Menachem. Influence of colloidal fouling and feed water recovery on salt rejection of RO and NF membranes. Desalination, vol.160, no.1, 1-12.

  94. Perreault, François, Tousley, Marissa E., Elimelech, Menachem. Thin-Film Composite Polyamide Membranes Functionalized with Biocidal Graphene Oxide Nanosheets. Environmental science & technology letters, vol.1, no.1, 71-76.

  95. Rana, D., Matsuura, T.. Surface Modifications for Antifouling Membranes. Chemical reviews, vol.110, no.4, 2448-2471.

  96. Ye, Gang, Lee, Jongho, Perreault, François, Elimelech, Menachem. Controlled Architecture of Dual-Functional Block Copolymer Brushes on Thin-Film Composite Membranes for Integrated “Defending” and “Attacking” Strategies against Biofouling. ACS applied materials & interfaces, vol.7, no.41, 23069-23079.

  97. Neilly, A., Jegatheesan, V., Shu, L.. Evaluating the potential for zero discharge from reverse osmosis desalination using integrated processes - A review. Desalination and water treatment, vol.11, no.1, 58-65.

  98. Xie, M., Shon, H.K., Gray, S.R., Elimelech, M.. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Water research, vol.89, 210-221.

  99. Diallo, Mamadou S., Kotte, Madhusudhana Rao, Cho, Manki. Mining Critical Metals and Elements from Seawater: Opportunities and Challenges. Environmental science & technology, vol.49, no.16, 9390-9399.

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로