$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Layer-by-layer carbon nanotube coatings for enhanced pool boiling heat transfer on metal surfaces

Carbon, v.107, 2016년, pp.607 - 618  

Lee, S. ,  Seo, G.H. ,  Lee, S. ,  Jeong, U. ,  Lee, S.J. ,  Kim, S.J. ,  Choi, W.

Abstract AI-Helper 아이콘AI-Helper

Micro/nanotextured coatings have enabled the manipulation of thermal characteristics in pool boiling heat transfer such as the heat transfer coefficient (HTC) and critical heat flux (CHF) because of the ability to optimize bubble formations and departures. However, fabricating such coatings on subst...

참고문헌 (73)

  1. Appl. Therm. Eng. Lin 25 1 127 2005 10.1016/j.applthermaleng.2004.02.012 Numerical study of heat pipe application in heat recovery systems 

  2. J. Microelectromech. Syst. Jiang 8 4 358 1999 10.1109/84.809049 Phase change in microchannel heat sinks with integrated temperature sensors 

  3. Ind. Eng. Chem. Proc. Des. Dev. Chen 5 3 322 1966 10.1021/i260019a023 Correlation for boiling heat transfer to saturated fluids in convective flow 

  4. Int. J. Heat Mass Transf. Wang 41 20 3109 1998 10.1016/S0017-9310(98)00060-X Heat and mass transfer for plate fin-and-tube heat exchangers, with and without hydrophilic coating 

  5. Int. J. Heat Mass Transf. Hwang 49 5-6 844 2006 10.1016/j.ijheatmasstransfer.2005.09.020 Critical heat flux in thin, uniform particle coatings 

  6. Appl. Phys. Lett. Betz 97 14 2010 10.1063/1.3485057 Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? 

  7. Int. J. Heat Mass Transf. Haramura 26 3 389 1983 10.1016/0017-9310(83)90043-1 A new hydrodynamic model of critical heat-flux, applicable widely to both pool and forced-convection boiling on submerged bodies in saturated liquids 

  8. Int. J. Heat Mass Transf. Chang 40 18 4437 1997 10.1016/S0017-9310(97)00055-0 Boiling heat transfer phenomena from microporous and porous surfaces in saturated FC-72 

  9. Int. J. Heat Mass Transf. Bang 48 12 2407 2005 10.1016/j.ijheatmasstransfer.2004.12.047 Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool 

  10. Int. J. Heat Mass Transf. Phan 52 23-24 5459 2009 10.1016/j.ijheatmasstransfer.2009.06.032 Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism 

  11. Appl. Phys. Lett. Ahn 98 7 2011 10.1063/1.3555430 Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling 

  12. Int. J. Heat Mass Transf. Liter 44 22 4287 2001 10.1016/S0017-9310(01)00084-9 Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment 

  13. Exp. Therm. Fluid Sci. Cieslinski 25 7 557 2002 10.1016/S0894-1777(01)00105-4 Nucleate pool boiling on porous metallic coatings 

  14. Int. J. Heat Fluid Flow Coursey 29 6 1577 2008 10.1016/j.ijheatfluidflow.2008.07.004 Nanofluid boiling: the effect of surface wettability 

  15. Int. J. Heat Mass Transf. Truong 53 1-3 85 2010 10.1016/j.ijheatmasstransfer.2009.10.002 Modification of sandblasted plate heaters using nanofluids to enhance pool boiling critical heat flux 

  16. Aiche J. Yan 53 12 3062 2007 10.1002/aic.11345 Antifouling and enhancing pool boiling by TiO2 coating surface in nanometer scale thickness 

  17. Int. J. Heat Mass Transf. Hendricks 53 15-16 3357 2010 10.1016/j.ijheatmasstransfer.2010.02.025 Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper 

  18. Int. J. Heat Mass Transf. Lu 54 25-26 5359 2011 10.1016/j.ijheatmasstransfer.2011.08.007 Critical heat flux of pool boiling on Si nanowire array-coated surfaces 

  19. J. Am. Chem. Soc. Geng 129 25 7758 2007 10.1021/ja0722224 Effect of acid treatment on carbon nanotube-based flexible transparent conducting films 

  20. J. Nanosci. Nanotechnol. Kwak 10 5 3512 2010 10.1166/jnn.2010.2282 Thermal characteristics of a transparent film heater using single-walled carbon nanotubes 

  21. Int. J. Heat Mass Transf. Ujereh 50 19-20 4023 2007 10.1016/j.ijheatmasstransfer.2007.01.030 Effects of carbon nanotube arrays on nucleate pool boiling 

  22. Appl. Phys. Lett. Dai 102 16 2013 10.1063/1.4802804 Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings 

  23. Int. J. Heat Mass Transf. Khanikar 52 15-16 3805 2009 10.1016/j.ijheatmasstransfer.2009.02.007 Effects of carbon nanotube coating on flow boiling in a micro-channel 

  24. Int. J. Heat Fluid Flow Singh 31 2 201 2010 10.1016/j.ijheatfluidflow.2009.11.002 Flow boiling enhancement on a horizontal heater using carbon nanotube coatings 

  25. Int. J. Heat Mass Transf. Jun 62 99 2013 10.1016/j.ijheatmasstransfer.2013.02.046 Pool boiling on nano-textured surfaces 

  26. J. Polym. Sci. Pol. Phys. Tang 47 22 2288 2009 10.1002/polb.21831 Design and fabrication of electrospun polyethersulfone nanofibrous scaffold for high-flux Nanofiltration membranes 

  27. Heat Mass Transf. Kim 45 7 991 2009 10.1007/s00231-007-0318-8 Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids 

  28. Heat Transf. Eng. Lu 32 10 827 2011 10.1080/01457632.2011.548267 Nanoscale surface modification techniques for pool boiling enhancement - a critical review and future directions 

  29. Adv. Mater. Jiang 18 8 1068 2006 10.1002/adma.200502462 Layer-by-layer self-assembly of composite polyelectrolyte-nafion membranes for direct methanol fuel cells 

  30. Colloid Surf. A Dubas 289 1-3 105 2006 10.1016/j.colsurfa.2006.04.012 Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers 

  31. Adv. Mater. Schmitt 9 1 61 1997 10.1002/adma.19970090114 Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure 

  32. Macromolecules Lvov 26 20 5396 1993 10.1021/ma00072a016 Assembly of thin-films by means of Successive deposition of alternate layers of DNA and poly(allylamine) 

  33. Thin Solid Films Decher 210 1-2 831 1992 10.1016/0040-6090(92)90417-A Buildup of ultrathin multilayer films by a self-assembly process .3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces 

  34. Macromol. Rapid Comm. Kong 15 5 405 1994 10.1002/marc.1994.030150503 A new kind of immobilized enzyme multilayer based on cationic and anionic interaction 

  35. J. Am. Chem. Soc. Keller 116 19 8817 1994 10.1021/ja00098a055 Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces - toward molecular beaker epitaxy 

  36. Energy Environ. Sci. Kim 6 3 888 2013 10.1039/c2ee23318e Rapid fabrication of thick spray-layer-by-layer carbon nanotube electrodes for high power and energy devices 

  37. Chem. Mater. Peng 23 20 4548 2011 10.1021/cm2019229 pH-promoted exponential layer-by-layer assembly of bicomponent polyelectrolyte/nanoparticle multilayers 

  38. J. Colloid Interf. Sci. Iler 21 6 569 1966 10.1016/0095-8522(66)90018-3 Multilayers of colloidal particles 

  39. Science Decher 277 5330 1232 1997 10.1126/science.277.5330.1232 Fuzzy nanoassemblies: toward layered polymeric multicomposites 

  40. Adv. Mater. Schaaf 24 8 1001 2012 10.1002/adma.201104227 Spray-assisted polyelectrolyte multilayer buildup: from step-by-step to single-step polyelectrolyte film constructions 

  41. Appl. Opt. Thomas 26 21 4688 1987 10.1364/AO.26.004688 Single-layer Tio2 and multilayer Tio2-Sio2 optical coatings prepared from colloidal suspensions 

  42. Langmuir Schlenoff 16 26 9968 2000 10.1021/la001312i Sprayed polyelectrolyte multilayers 

  43. Langmuir Picart 17 23 7414 2001 10.1021/la010848g Buildup mechanism for poly(L-lysine)/hyaluronic acid films onto a solid surface 

  44. J. Am. Chem. Soc. Lee 131 2 671 2009 10.1021/ja807059k Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications 

  45. Nanotechnology Che 11 2 65 2000 10.1088/0957-4484/11/2/305 Thermal conductivity of carbon nanotubes 

  46. Phys. Rev. Lett. Berber 84 20 4613 2000 10.1103/PhysRevLett.84.4613 Unusually high thermal conductivity of carbon nanotubes 

  47. Science Wong 277 5334 1971 1997 10.1126/science.277.5334.1971 Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes 

  48. Sens. Actuators B-Chem. Yu 119 2 512 2006 10.1016/j.snb.2005.12.048 Layer-by-layer assembly and humidity sensitive behavior of poly(ethyleneimine)/multiwall carbon nanotube composite films 

  49. Biotechnol. Bioeng. Yuan 103 2 268 2009 10.1002/bit.22252 Grafting of antibacterial polymers on stainless steel via surface-initiated atom transfer radical polymerization for inhibiting biocorrosion by desulfovibrio desulfuricans 

  50. Nano Res. Zhao 4 7 623 2011 10.1007/s12274-011-0118-9 Tunable separation of single-walled carbon nanotubes by dual-surfactant density gradient ultracentrifugation 

  51. Ind. Eng. Chem. Res. Choi 51 45 14714 2012 10.1021/ie301551a rapid electromechanical transduction on a single-walled carbon nanotube film: sensing fast mechanical loading via detection of electrical signal change 

  52. Nanoscale Yang 3 4 1361 2011 10.1039/c0nr00855a Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films 

  53. Electrochim. Acta Sun 55 9 3041 2010 10.1016/j.electacta.2009.12.103 A novel layer-by-layer self-assembled carbon nanotube-based anode: preparation, characterization, and application in microbial fuel cell 

  54. J. Am. Chem. Soc. Lvov 117 22 6117 1995 10.1021/ja00127a026 Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption 

  55. Langmuir Hoogeveen 12 15 3675 1996 10.1021/la951574y Formation and stability of multilayers of polyelectrolytes 

  56. Exp. Therm. Fluid Sci. Seo 60 138 2015 10.1016/j.expthermflusci.2014.08.015 Enhanced critical heat flux with single-walled carbon nanotubes bonded on metal surfaces 

  57. Biomaterials Harrison 28 2 344 2007 10.1016/j.biomaterials.2006.07.044 Carbon nanotube applications for tissue engineering 

  58. Langmuir Sethi 25 8 4311 2009 10.1021/la9001187 Superhydrophobic conductive carbon nanotube coatings for steel 

  59. Nanoscale Microscale Therm. Weibel 16 1 1 2012 10.1080/15567265.2011.646000 Carbon nanotube coatings for enhanced capillary-fed boiling from porous microstructures 

  60. Sep. Purif. Technol. Rao 48 3 244 2006 10.1016/j.seppur.2005.07.031 Preparation and performance of poly(vinyl alcohol)/polyethyleneimine blend membranes for the dehydration of 1,4-dioxane by pervaporation: comparison with glutaraldehyde cross-linked membranes 

  61. Phys. Rev. E Gruener 79 6 2009 10.1103/PhysRevE.79.067301 Capillary rise of water in hydrophilic nanopores 

  62. J. Appl. Phys. Witharana 112 6 2012 10.1063/1.4752758 Bubble nucleation on nano- to micro-size cavities and posts: an experimental validation of classical theory 

  63. J. Heat Trans-T Asme Sadasivan 117 3 558 1995 10.1115/1.2822614 Perspective - issues in Chf modeling - the need for new experiments 

  64. J. Heat Trans-T Asme Jones 131 12 2009 10.1115/1.3220144 The influence of surface roughness on nucleate pool boiling heat transfer 

  65. Nature Biswas 490 7421 2012 10.1038/nature11645 High-performance bulk thermoelectrics with all-scale hierarchical architectures (vol. 489, pg 414, 2012) 

  66. Appl. Phys. Lett. Chu 102 15 2013 10.1063/1.4801811 Hierarchically structured surfaces for boiling critical heat flux enhancement 

  67. Langmuir Rahman 30 37 11225 2014 10.1021/la5030923 Role of wickability on the critical heat flux of structured superhydrophilic surfaces 

  68. Appl. Phys. Lett. Kim 105 19 2014 10.1063/1.4901569 Interfacial wicking dynamics and its impact on critical heat flux of boiling heat transfer 

  69. J. Heat Trans-T Asme Kandlikar 123 6 1071 2001 10.1115/1.1409265 A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation 

  70. Appl. Phys. Lett. O’Hanley 103 2 2013 Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux 

  71. Sci. Rep. - UK Ahn 4 2014 Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling 

  72. Nat. Commun. Dhillon 6 2015 10.1038/ncomms9247 Critical heat flux maxima during boiling crisis on textured surfaces 

  73. Exp. Therm. Fluid Sci. Seo 64 42 2015 10.1016/j.expthermflusci.2015.01.017 Pool boiling heat transfer characteristics of zircaloy and SiC claddings in deionized water at low pressure 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로