$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Chemical Stability of Graphite-Polypropylene Bipolar Plates for the Vanadium Redox Flow Battery at Resting State 원문보기

Journal of the Electrochemical Society : JES, v.163 no.10, 2016년, pp.A2318 - A2325  

Satola, Barbara (a NEXT ENERGY - EWE Research Centre for Energy Technology at the University of Oldenburg, 26129 Oldenburg, Germany) ,  Kirchner, Carolina Nunes (a NEXT ENERGY - EWE Research Centre for Energy Technology at the University of Oldenburg, 26129 Oldenburg, Germany) ,  Komsiyska, Lidiya (a NEXT ENERGY - EWE Research Centre for Energy Technology at the University of Oldenburg, 26129 Oldenburg, Germany) ,  Wittstock, Gunther (b Carl von Ossietzky University of Oldenburg, Faculty of Mathematics and Natural Sciences, Center of Interface Science, Institute of Chemistry, 26111 Oldenburg, Germany)

Abstract AI-Helper 아이콘AI-Helper

Current collectors called bipolar plates (BPP) are important elements within the conversion unit of the vanadium redox flow battery (VRFB). They are in direct contact with acidic electrolytes, containing vanadium species in different oxidation states. The influence of the state of charge (SOC) on th...

주제어

참고문헌 (67)

  1. Li, Liyu, Kim, Soowhan, Wang, Wei, Vijayakumar, M., Nie, Zimin, Chen, Baowei, Zhang, Jianlu, Xia, Guanguang, Hu, Jianzhi, Graff, Gordon, Liu, Jun, Yang, Zhenguo. A Stable Vanadium Redox‐Flow Battery with High Energy Density for Large‐Scale Energy Storage. Advanced energy materials, vol.1, no.3, 394-400.

  2. Skyllas‐Kazacos, M., Grossmith, F.. Efficient Vanadium Redox Flow Cell. Journal of the Electrochemical Society : JES, vol.134, no.12, 2950-2953.

  3. Skyllas-Kazacos, M., Chakrabarti, M. H., Hajimolana, S. A., Mjalli, F. S., Saleem, M.. Progress in Flow Battery Research and Development. Journal of the Electrochemical Society : JES, vol.158, no.8, R55-.

  4. Rudolph, S., Schroder, U., Bayanov, I.M., Pfeiffer, G.. Corrosion prevention of graphite collector in vanadium redox flow battery. Journal of electroanalytical chemistry, vol.709, 93-98.

  5. Caglar, B., Fischer, P., Kauranen, P., Karttunen, M., Elsner, P.. Development of carbon nanotube and graphite filled polyphenylene sulfide based bipolar plates for all-vanadium redox flow batteries. Journal of power sources, vol.256, 88-95.

  6. Caglar, Burak, Richards, Justin, Fischer, Peter, Tuebke, Jens. Conductive Polymer Composites And Coated Metals As Alternative Bipolar Plate Materials For All-vanadium Redox-flow Batteries. Advanced materials letters, vol.5, no.6, 299-308.

  7. Zhang, Jihai, Zhou, Tao, Xia, Liping, Yuan, Canyao, Zhang, Weidong, Zhang, Aiming. Polypropylene elastomer composite for the all-vanadium redox flow battery: current collector materials. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.5, 2387-2398.

  8. Haddadi-Asl, V., Kazacos, M., Skyllas-Kazacos, M.. Conductive carbon-polypropylene composite electrodes for vanadium redox battery. Journal of applied electrochemistry, vol.25, no.1,

  9. Park, Minjoon, Jung, Yang-Jae, Ryu, Jaechan, Cho, Jaephil. Material selection and optimization for highly stable composite bipolar plates in vanadium redox flow batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.2, no.38, 15808-15815.

  10. Kim, K.H., Kim, B.G., Lee, D.G.. Development of carbon composite bipolar plate (BP) for vanadium redox flow battery (VRFB). Composite structures, vol.109, 253-259.

  11. Mohammadi, F., Timbrell, P., Zhong, S., Padeste, C., Skyllas-Kazacos, M.. Overcharge in the vanadium redox battery and changes in electrical resistivity and surface functionality of graphite-felt electrodes. Journal of power sources, vol.52, no.1, 61-68.

  12. Kazacos, M., Skyllas‐Kazacos, M.. Performance Characteristics of Carbon Plastic Electrodes in the All‐Vanadium Redox Cell. Journal of the Electrochemical Society : JES, vol.136, no.9, 2759-2760.

  13. Chakrabarti, M.H., Brandon, N.P., Hajimolana, S.A., Tariq, F., Yufit, V., Hashim, M.A., Hussain, M.A., Low, C.T.J., Aravind, P.V.. Application of carbon materials in redox flow batteries. Journal of power sources, vol.253, 150-166.

  14. Hagg, Ch.M., Skyllas‐Kazacos, M.. Novel bipolar electrodes for battery applications. Journal of applied electrochemistry, vol.32, no.10, 1063-1069.

  15. Lim, Jun Woo, Lee, Dai Gil. Carbon fiber/polyethylene bipolar plate-carbon felt electrode assembly for vanadium redox flow batteries (VRFB). Composite structures, vol.134, 483-492.

  16. Liu, Huijun, Yang, Lingxu, Xu, Qian, Yan, Chuanwei. Corrosion behavior of a bipolar plate of carbon-polythene composite in a vanadium redox flow battery. RSC advances, vol.5, no.8, 5928-5932.

  17. Qian, Peng, Zhang, Huamin, Chen, Jian, Wen, Yuehua, Luo, Qingtao, Liu, Zonghao, You, Dongjiang, Yi, Baolian. A novel electrode-bipolar plate assembly for vanadium redox flow battery applications. Journal of power sources, vol.175, no.1, 613-620.

  18. Lee, Nam Jin, Lee, Seung-Wook, Kim, Ki Jae, Kim, Jae-Hun, Park, Min-Sik, Jeong, Goojin, Kim, Young-Jun, Byun, Dongjin. Development of Carbon Composite Bipolar Plates for Vanadium Redox Flow Batteries. Bulletin of the Korean chemical society, vol.33, no.11, 3589-3592.

  19. Choe, J., Kim, K.H., Lee, D.G.. Corrugated carbon/epoxy composite bipolar plate for vanadium redox flow batteries. Composite structures, vol.119, 534-542.

  20. Choe, Jaeheon, Lim, Jun Woo, Kim, Minkook, Kim, Jinwhan, Lee, Dai Gil. Durability of graphite coated carbon composite bipolar plates for vanadium redox flow batteries. Composite structures, vol.134, 106-113.

  21. Kim, K.H., Choe, J., Nam, S., Kim, B.G., Lee, D.G.. Surface crack closing method for the carbon composite bipolar plates of a redox flow battery. Composite structures, vol.119, 436-442.

  22. 10.1016/B978-044452787-5.00180-3 Richardson J. A. , Shreir's Corrosion, Richardson T. J. A. , Editor, 4th ed., p. 1226, Elsevier, Amsterdam, (2010). 

  23. Liu, H., Xu, Q., Yan, C., Qiao, Y.. Corrosion behavior of a positive graphite electrode in vanadium redox flow battery. Electrochimica acta, vol.56, no.24, 8783-8790.

  24. Pezeshki, Alan M., Sacci, Robert L., Veith, Gabriel M., Zawodzinski, Thomas A., Mench, Matthew M.. The Cell-in-Series Method: A Technique for Accelerated Electrode Degradation in Redox Flow Batteries. Journal of the Electrochemical Society : JES, vol.163, no.1, A5202-A5210.

  25. Liu, H., Xu, Q., Yan, C.. On-line mass spectrometry study of electrochemical corrosion of the graphite electrode for vanadium redox flow battery. Electrochemistry communications, vol.28, 58-62.

  26. Noack, Jens N., Vorhauser, Lorenz, Pinkwart, Karsten, Tuebke, Jens. Aging Studies of Vanadium Redox Flow Batteries. ECS transactions, vol.33, no.39, 3-9.

  27. Kim, Ki Jae, Park, Min-Sik, Kim, Young-Jun, Kim, Jung Ho, Dou, Shi Xue, Skyllas-Kazacos, M.. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.33, 16913-16933.

  28. Liu, Le, Xi, Jingyu, Wu, Zenghua, Zhang, Wenguang, Zhou, Haipeng, Li, Weibin, Qiu, Xinping. State of charge monitoring for vanadium redox flow batteries by the transmission spectra of V(IV)/V(V) electrolytes. Journal of applied electrochemistry, vol.42, no.12, 1025-1031.

  29. grosse Austing, J., Nunes Kirchner, C., Komsiyska, L., Wittstock, G.. Investigation of crossover processes in a unitized bidirectional vanadium/air redox flow battery. Journal of power sources, vol.306, 692-701.

  30. Brooker, R. Paul, Bell, Curtis J., Bonville, Leonard J., Kunz, H. Russell, Fenton, James M.. Determining Vanadium Concentrations Using the UV-Vis Response Method. Journal of the Electrochemical Society : JES, vol.162, no.4, A608-A613.

  31. Tang, Zhijiang, Aaron, Douglas S., Papandrew, Alexander B., Zawodzinski Jr., Thomas A.. Monitoring the State of Charge of Operating Vanadium Redox Flow Batteries. ECS transactions, vol.41, no.23, 1-9.

  32. Sun, C.N., Delnick, F.M., Baggetto, L., Veith, G.M., Zawodzinski, T.A.. Hydrogen evolution at the negative electrode of the all-vanadium redox flow batteries. Journal of power sources, vol.248, 560-564.

  33. Eur. Chem. Bull. Corcuera 1 511 2012 

  34. Int. J. Electrochem. Sci. Chen 7 3750 2012 10.1016/S1452-3981(23)13994-0 

  35. Arkles B. , Paint Coat. Ind., 114 (2006). 

  36. Kozbial, A., Li, Z., Sun, J., Gong, X., Zhou, F., Wang, Y., Xu, H., Liu, H., Li, L.. Understanding the intrinsic water wettability of graphite. Carbon, vol.74, 218-225.

  37. Kumar, G., Prabhu, K.N.. Review of non-reactive and reactive wetting of liquids on surfaces. Advances in colloid and interface science, vol.133, no.2, 61-89.

  38. Chau, T.T., Bruckard, W.J., Koh, P.T.L., Nguyen, A.V.. A review of factors that affect contact angle and implications for flotation practice. Advances in colloid and interface science, vol.150, no.2, 106-115.

  39. Desimoni, E., Casella, G. I., Morone, A., Salvi, A. M.. XPS determination of oxygen‐containing functional groups on carbon‐fibre surfaces and the cleaning of these surfaces. Surface and interface analysis : SIA, vol.15, no.10, 627-634.

  40. Darmstadt, H., Roy, C., Kaliaguine, S.. ESCA characterization of commercial carbon blacks and of carbon blacks from vacuum pyrolysis of used tires. Carbon, vol.32, no.8, 1399-1406.

  41. Puziy, A.M., Poddubnaya, O.I., Socha, R.P., Gurgul, J., Wisniewski, M.. XPS and NMR studies of phosphoric acid activated carbons. Carbon, vol.46, no.15, 2113-2123.

  42. Yue, Lu, Li, Weishan, Sun, Fengqiang, Zhao, Lingzhi, Xing, Lidan. Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery. Carbon, vol.48, no.11, 3079-3090.

  43. Ruess, G.. �ber das Graphitoxyhydroxyd (Graphitoxyd). Monatshefte für Chemie und verwandte Teile anderer Wissenschaften : gesammelte Abhandlungen aus den Sitzungsberichten der Kaiserlichen Akademie der Wissenschaften, vol.76, no.3, 381-417.

  44. Scholz, W., Boehm, H. P.. Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids. Zeitschrift für anorganische und allgemeine Chemie, vol.369, no.3, 327-340.

  45. Hofmann, Ulrich, Holst, Rudolf. Über die Säurenatur und die Methylierung von Graphitoxyd. Berichte der Deutschen Chemischen Gesellschaft. Abteilung A, Vereinsnachrichten, vol.72, no.4, 754-771.

  46. 10.1002/1097-4628(20000822)77:8<1742::AID-APP11>3.0.CO;2-T 

  47. Silversmit, Geert, Depla, Diederik, Poelman, Hilde, Marin, Guy B., De Gryse, Roger. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of electron spectroscopy and related phenomena, vol.135, no.2, 167-175.

  48. Casanova, R., Mendialdua, J., Barbaux, Y.. XPS studies of V2O5, V6O13, VO2 and V2O3. Journal of electron spectroscopy and related phenomena, vol.71, no.3, 249-261.

  49. Biesinger, M.C., Lau, L.W.M., Gerson, A.R., Smart, R.St.C.. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied surface science, vol.257, no.3, 887-898.

  50. Mancharan, Ramasamy, Goodenough, John B.. Methanol oxidation in acid on ordered NiTi. Journal of materials chemistry, vol.2, no.8, 875-887.

  51. Hofstead-Duffy, Augusta M., Chen, De-Jun, Sun, Shi-Gang, Tong, YuYe J.. Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: a revisit to the current ratio criterion. Journal of materials chemistry, vol.22, no.11, 5205-5208.

  52. Kinoshita, K., Bett, J.A.S.. Potentiodynamic analysis of surface oxides on carbon blacks. Carbon, vol.11, no.4, 403-411.

  53. Choo, Hyun-Suk, Kinumoto, Taro, Jeong, Soon-Ki, Iriyama, Yasutoshi, Abe, Takeshi, Ogumi, Zempachi. Mechanism for Electrochemical Oxidation of Highly Oriented Pyrolytic Graphite in Sulfuric Acid Solution. Journal of the Electrochemical Society : JES, vol.154, no.10, B1017-.

  54. Boukhvalov, D. W., Katsnelson, M. I.. Modeling of Graphite Oxide. Journal of the American Chemical Society, vol.130, no.32, 10697-10701.

  55. Shao, Guilin, Lu, Yonggen, Wu, Fangfang, Yang, Changling, Zeng, Fanlong, Wu, Qilin. Graphene oxide: the mechanisms of oxidation and exfoliation. Journal of materials science, vol.47, no.10, 4400-4409.

  56. Park, Sungjin, Ruoff, Rodney S.. Chemical methods for the production of graphenes. Nature nanotechnology, vol.4, no.4, 217-224.

  57. Kovtyukhova, Nina I., Wang, Yuanxi, Berkdemir, Ayse, Cruz-Silva, Rodolfo, Terrones, Mauricio, Crespi, Vincent H., Mallouk, Thomas E.. Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nature chemistry, vol.6, no.11, 957-963.

  58. Shin, Y.R., Jung, S.M., Jeon, I.Y., Baek, J.B.. The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture. Carbon, vol.52, 493-498.

  59. Dimiev, Ayrat M., Tour, James M.. Mechanism of Graphene Oxide Formation. ACS nano, vol.8, no.3, 3060-3068.

  60. Xia, Zhen Yuan, Pezzini, Sergio, Treossi, Emanuele, Giambastiani, Giuliano, Corticelli, Franco, Morandi, Vittorio, Zanelli, Alberto, Bellani, Vittorio, Palermo, Vincenzo. Graphene: The Exfoliation of Graphene in Liquids by Electrochemical, Chemical, and Sonication‐Assisted Techniques: A Nanoscale Study (Adv. Funct. Mater. 37/2013). Advanced functional materials, vol.23, no.37, 4756-4756.

  61. Deheryan, S., J. Cott, D., W. Mertens, P., Heyns, M., M. Vereecken, P.. Direct correlation between the measured electrochemical capacitance, wettability and surface functional groups of CarbonNanosheets. Electrochimica acta, vol.132, 574-582.

  62. Carr, K.E.. Intercalation and oxidation effects on graphite of a mixture of sulphuric and nitric acids. Carbon, vol.8, no.2, 155-158,IN11-IN16,159-166.

  63. McAllister, M. J., Li, J.-L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., Herrera-Alonso, M., Milius, D. L., Car, R., Prud'homme, R. K., Aksay, I. A.. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of materials : a publication of the American Chemical Society, vol.19, no.18, 4396-4404.

  64. 10.1002/(SICI)1097-4628(20000404)76:1<75::AID-APP10>3.0.CO;2-P 

  65. Tehrani B, Ali R, Shoushtari, A.M, Malek, R.M.A, Abdous, M. Effect of chemical oxidation treatment on dyeability of polypropylene. Dyes and pigments : an international journal, vol.63, no.1, 95-100.

  66. 10.5772/34388 

  67. Beckert R. Knölker H.-J. Fanghänel E. Metz P. Habicher P. W. Schwetlick K. , in Organikum, p. 420, Wiley VCH, Weinheim (2009). 

관련 콘텐츠

오픈액세스(OA) 유형

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로