$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Detection of multiple thin surface cracks using vibrothermography with low-power piezoceramic-based ultrasonic actuator—a numerical study with experimental verification

Smart materials & structures, v.25 no.5, 2016년, pp.055042 -   

Parvasi, Seyed Mohammad (Department of Mechanical Engineering, University of Houston, Houston, TX 77004, USA) ,  Xu, Changhang (College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580, People’s Republic of China) ,  Kong, Qingzhao (Department of Mechanical Engineering, University of Houston, Houston, TX 77004, USA) ,  Song, Gangbing (Department of Mechanical Engineering, University of Houston, Houston, TX 77004, USA)

Abstract AI-Helper 아이콘AI-Helper

Ultrasonic vibrations in cracked structures generate heat at the location of defects mainly due to frictional rubbing and viscoelastic losses at the defects. Vibrothermography is an effective nondestructive evaluation method which uses infrared imaging (IR) techniques to locate defects such as crack...

참고문헌 (21)

  1. [1] Roemer J, Pieczonka L, Szwedo M, Uhl T and Staszewski W J 2013 Thermography of metallic and composite structures-review of applications Int. Workshop on Smart Materials Structures SHM vol 18 Thermography of metallic and composite structures-review of applications Roemer J, Pieczonka L, Szwedo M, Uhl T and Staszewski W J Int. Workshop on Smart Materials Structures SHM 18 2013 

  2. [2] Reifsnider K L, Henneke E G and Stinchcomb W W 1980 The Mechanics of Vibrothermography (New York: Mechanics of Nondestructive Testing Plenum Press) pp 249–76 Reifsnider K L, Henneke E G and Stinchcomb W W The Mechanics of Vibrothermography 1980 249 276 

  3. [3] Morbidini M, Cawley P, Barden T, Almond D and Duffour P 2006 Prediction of the thermosonic signal from fatigue cracks in metals using vibration damping measurements J. Appl. Phys. 100 104905 10.1063/1.2361091 Prediction of the thermosonic signal from fatigue cracks in metals using vibration damping measurements Morbidini M, Cawley P, Barden T, Almond D and Duffour P J. Appl. Phys. 100 104905 2006 

  4. [4] Renshaw J, Chen J C, Holland S D and Bruce Thompson R 2011 The sources of heat generation in vibrothermography NDT&E Int. 44 736–9 10.1016/j.ndteint.2011.07.012 The sources of heat generation in vibrothermography Renshaw J, Chen J C, Holland S D and Bruce Thompson R NDT&E Int. 0308-9126 44 2011 736 739 

  5. [5] Rizi A S, Hedayatrasa S, Maldague X and Vukhanh T 2013 FEM modeling of ultrasonic vibrothermography of a damaged plate and qualitative study of heating mechanisms Infrared Phys. Technol. 61 101–10 10.1016/j.infrared.2013.07.011 FEM modeling of ultrasonic vibrothermography of a damaged plate and qualitative study of heating mechanisms Rizi A S, Hedayatrasa S, Maldague X and Vukhanh T Infrared Phys. Technol. 1350-4495 61 2013 101 110 

  6. [6] Mabrouki F, Thomas M, Genest M and Fahr A 2009 Frictional heating model for efficient use of vibrothermography NDT&E Int. 42 345–52 10.1016/j.ndteint.2009.01.012 Frictional heating model for efficient use of vibrothermography Mabrouki F, Thomas M, Genest M and Fahr A NDT&E Int. 0308-9126 42 2009 345 352 

  7. [7] Montanini R and Freni F 2013 Correlation between vibrational mode shapes and viscoelastic heat generation in vibrothermography NDT&E Int. 58 43–8 10.1016/j.ndteint.2013.04.007 Correlation between vibrational mode shapes and viscoelastic heat generation in vibrothermography Montanini R and Freni F NDT&E Int. 0308-9126 58 2013 43 48 

  8. [8] Mabrouki F, Thomas M, Genest M and Fahr A 2010 Numerical modeling of vibrothermography based on plastic deformation NDT&E Int. 43 476–83 10.1016/j.ndteint.2010.05.002 Numerical modeling of vibrothermography based on plastic deformation Mabrouki F, Thomas M, Genest M and Fahr A NDT&E Int. 0308-9126 43 2010 476 483 

  9. [9] Maldague X P V 2001 Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley Series in Microwave and Optical Engineering) (New York: Wiley) p 684 Maldague X P V Theory and Practice of Infrared Technology for Nondestructive Testing 2001 684 

  10. [10] Piau J M A, Bendada X and Maldague X P V 2008 Ultrasound vibrothermography applications for nondestructive discontinuity detection Mater. Eval. 66 1047–52 Ultrasound vibrothermography applications for nondestructive discontinuity detection Piau J M A, Bendada X and Maldague X P V Mater. Eval. 0025-5327 66 2008 1047 1052 

  11. [11] Shepard S M, Ahmed T and Lhota J R 2004 Experimental considerations in vibrothermography Proc. SPIE 5405 332–5 10.1117/12.546599 Experimental considerations in vibrothermography Shepard S M, Ahmed T and Lhota J R Proc. SPIE 5405 2004 332 335 

  12. [12] Han X, Islam M S, Newaz G, Favro L D and Thomas R L 2005 Finite-element modeling of acoustic chaos to sonic infrared imaging J. Appl. Phys. 98 14907 10.1063/1.1947382 Finite-element modeling of acoustic chaos to sonic infrared imaging Han X, Islam M S, Newaz G, Favro L D and Thomas R L J. Appl. Phys. 98 14907 2005 

  13. [13] Holland S D, Uhl C and Renshaw J 2008 Toward a viable strategy for estimating vibrothermographic probability of detection Review of Progress in Quantitative Nondestructive Evaluation, AIP Conf. Proc. vol 27 pp 491–7 Toward a viable strategy for estimating vibrothermographic probability of detection Holland S D, Uhl C and Renshaw J Review of Progress in Quantitative Nondestructive Evaluation, AIP Conf. Proc. 27 2008 491 497 

  14. [14] Mendioroz A, Castelo A, Celorrio R and Salazar A 2014 Characterization and spatial resolution of cracks using lock-in vibrothermography NDT&E Int. 66 8–15 10.1016/j.ndteint.2014.04.004 Characterization and spatial resolution of cracks using lock-in vibrothermography Mendioroz A, Castelo A, Celorrio R and Salazar A NDT&E Int. 0308-9126 66 2014 8 15 

  15. [15] Holland S D, Uhl C, Ouyang Z, Bantel T, Li M, Meeker W Q, Lively J, Brasche L and Eisenmann D 2011 Quantifying the vibrothermographic effect NDT&E Int. 44 775–82 10.1016/j.ndteint.2011.07.006 Quantifying the vibrothermographic effect Holland S D, Uhl C, Ouyang Z, Bantel T, Li M, Meeker W Q, Lively J, Brasche L and Eisenmann D NDT&E Int. 0308-9126 44 2011 775 782 

  16. [16] Li M, Holland S D and Meeker W Q 2010 Statistical methods for automatic crack detection based on vibrothermography sequence-of-images data Appl. Stoch. Models Bus. Ind. 26 481–95 10.1002/asmb.866 Statistical methods for automatic crack detection based on vibrothermography sequence-of-images data Li M, Holland S D and Meeker W Q Appl. Stoch. Models Bus. Ind. 26 2010 481 495 

  17. [17] Vaddi J, Reusser R and Holland S D 2011 Characterization of piezoelectric stack actuators for vibrothermography AIP Conf. Proc. vol 1335 pp 423–9 Characterization of piezoelectric stack actuators for vibrothermography Vaddi J, Reusser R and Holland S D AIP Conf. Proc. 1335 2011 423 429 

  18. [18] Dillenz A, Zweschper T and Busse G 2002 Burst phase-angle thermography with elastic waves. AeroSense 2002 Int. Society for Optics and Photonics pp 572–7 Burst phase-angle thermography with elastic waves. AeroSense 2002 Dillenz A, Zweschper T and Busse G Int. Society for Optics and Photonics 2002 572 577 

  19. [19] Guo X and Mao Y 2015 Defect identification based on parameter estimation of histogram in ultrasonic IR thermography Mech. Syst. Signal Process. 58 218–27 10.1016/j.ymssp.2014.12.011 Defect identification based on parameter estimation of histogram in ultrasonic IR thermography Guo X and Mao Y Mech. Syst. Signal Process. 58 2015 218 227 

  20. [20] ABAQUS 2011 Analysis User’s Manual Version 6.11 On-line Documentation ABAQUS 2011 

  21. [21] Gururaja T R, Schulze W A, Cross L E, Newnham R E, Auld B A and Wang Y J 1985 Piezoelectric composite materials for ultrasonic transducer applications: I. Resonant modes of vibration of PZT rod-polymer composites IEEE Trans. Sonics Ultrason. 32 481–98 10.1109/T-SU.1985.31623 Piezoelectric composite materials for ultrasonic transducer applications: I. Resonant modes of vibration of PZT rod-polymer composites Gururaja T R, Schulze W A, Cross L E, Newnham R E, Auld B A and Wang Y J IEEE Trans. Sonics Ultrason. 0018-9537 32 1985 481 498 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로