$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Interfacial characterization and reinforcing mechanism of novel carbon nanotube - Carbon fibre hybrid composites

Carbon, v.109, 2016년, pp.74 - 86  

Li, Q. ,  Church, J.S. ,  Naebe, M. ,  Fox, B.L.

Abstract AI-Helper 아이콘AI-Helper

Carbon nanotube (CNT) deposition onto carbon fibre resulting in hybrid surface structures with various morphologies were successfully carried out using electrospray technique. In terms of tensile testing and Weibull analysis this process did not degrade fibre mechanical properties. When incorporated...

참고문헌 (62)

  1. Mater. Sci. Eng. B Belin 119 2 105 2005 10.1016/j.mseb.2005.02.046 Characterization methods of carbon nanotubes: a review 

  2. Carbon Coleman 44 9 1624 2006 10.1016/j.carbon.2006.02.038 Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites 

  3. ACS Appl. Mater. Interfaces Liu 6 9 6069 2014 10.1021/am405136s Polymer/carbon nanotube nano composite fibers-a review 

  4. Polymer Chae 46 24 10925 2005 10.1016/j.polymer.2005.08.092 A comparison of reinforcement efficiency of various types of carbon nanotubes in poly acrylonitrile fiber 

  5. Mater. Des. Aldajah 34 379 2012 10.1016/j.matdes.2011.07.013 Transverse strength enhancement of carbon fiber reinforced polymer composites by means of magnetically aligned carbon nanotubes 

  6. Appl. Phys. A-Mater. Sci. Process. Sennett 76 1 111 2003 10.1007/s00339-002-1449-x Dispersion and alignment of carbon nanotubes in polycarbonate 

  7. J. Polym. Sci. Part B-Polymer Phys. Putz 42 12 2286 2004 10.1002/polb.20073 Elastic modulus of single-walled carbon nanotube/poly(methyl methacrylate) nanocomposites 

  8. J. Mater. Chem. Qian 20 23 4751 2010 10.1039/c000041h Carbon nanotube-based hierarchical composites: a review 

  9. J. Appl. Phys. Thostenson 91 9 6034 2002 10.1063/1.1466880 Carbon nanotube/carbon fiber hybrid multiscale composites 

  10. Surf. Coat. Technol. Sharma 205 2 350 2010 10.1016/j.surfcoat.2010.06.055 Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites 

  11. Compos. Part A-Appl. Sci. Qian 41 9 1107 2010 10.1016/j.compositesa.2010.04.004 Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation 

  12. Compos. Sci. Technol. Qian 70 2 393 2010 10.1016/j.compscitech.2009.11.014 Carbon nanotube grafted silica fibres: characterising the interface at the single fibre level 

  13. Compos. Sci. Technol. Sager 69 7-8 898 2009 10.1016/j.compscitech.2008.12.021 Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix 

  14. Compos. Part A Appl. Sci. Manuf. Li 90 174 2016 10.1016/j.compositesa.2016.05.004 A systematic investigation into a novel method for preparing carbon fibre-carbon nanotube hybrid structures 

  15. Carbon Kim 54 258 2013 10.1016/j.carbon.2012.11.037 Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface 

  16. ACS Appl. Mater. Interfaces Kim 4 4 2250 2012 10.1021/am3002499 Degradation and healing mechanisms of carbon fibers during the catalytic growth of carbon nanotubes on their surfaces 

  17. Compos. Sci. Technol. Du 101 159 2014 10.1016/j.compscitech.2014.07.011 Flame synthesis of carbon nanotubes onto carbon fiber woven fabric and improvement of interlaminar toughness of composite laminates 

  18. Carbon Du 50 6 2347 2012 10.1016/j.carbon.2012.01.003 On the flame synthesis of carbon nanotubes grafted onto carbon fibers and the bonding force between them 

  19. Carbon Oulanti 95 261 2015 10.1016/j.carbon.2015.08.041 Growth of carbon nanotubes on carbon fibers using the combustion flame oxy-acetylene method 

  20. Langmuir Bekyarova 23 7 3970 2007 10.1021/la062743p Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites 

  21. Mater. Lett. Guo 66 1 382 2012 10.1016/j.matlet.2011.09.022 Preparation and characterization of carbon nanotubes/carbon fiber hybrid material by ultrasonically assisted electrophoretic deposition 

  22. ACS Appl. Mater. Interfaces Tamrakar 8 2 1501 2016 10.1021/acsami.5b10903 Tailoring interfacial properties by controlling carbon nanotube coating thickness on glass fibers using electrophoretic deposition 

  23. Carbon He 45 13 2559 2007 10.1016/j.carbon.2007.08.018 Preparation of a carbon nanotube/carbon fiber multi-scale reinforcement by grafting multi-walled carbon nanotubes onto the fibers 

  24. Mater. Lett. Laachachi 62 3 394 2008 10.1016/j.matlet.2007.05.044 A chemical method to graft carbon nanotubes onto a carbon fiber 

  25. Mater. Lett. Mei 64 22 2505 2010 10.1016/j.matlet.2010.07.056 Grafting carbon nanotubes onto carbon fiber by use of dendrimers 

  26. J. Mater. Chem. Peng 22 13 5928 2012 10.1039/c2jm16723a Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites 

  27. Carbon Li 52 0 109 2013 10.1016/j.carbon.2012.09.011 Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers 

  28. Compos. Part A Appl. Sci. Manuf. Warrier 41 4 532 2010 10.1016/j.compositesa.2010.01.001 The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix 

  29. Carbon Gao 48 13 3788 2010 10.1016/j.carbon.2010.06.041 A comparative study of damage sensing in fiber composites using uniformly and non-uniformly dispersed carbon nanotubes 

  30. Compos. Sci. Technol. Barber 64 13 1915 2004 10.1016/j.compscitech.2004.02.004 Characterization of E-glass-polypropylene interfaces using carbon nanotubes as strain sensors 

  31. J. Mater. Sci. Faulkner 44 11 2858 2009 10.1007/s10853-009-3378-y Study of composite joint strength with carbon nanotube reinforcement 

  32. Compos. Struct. Davis 92 11 2653 2010 10.1016/j.compstruct.2010.03.019 Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology 

  33. Compos. Part A Appl. Sci. Manuf. Siddiqui 40 10 1606 2009 10.1016/j.compositesa.2009.07.005 Tensile strength of glass fibres with carbon nanotube-epoxy nanocomposite coating 

  34. Compos. Sci. Technol. Gao 68 14 2892 2008 10.1016/j.compscitech.2007.10.009 Nanocomposite coatings for healing surface defects of glass fibers and improving interfacial adhesion 

  35. J. Aerosol Sci. Ganan-Calvo 28 2 249 1997 10.1016/S0021-8502(96)00433-8 Current and droplet size in the electrospraying of liquids. Scaling laws 

  36. J. Colloid Interface Sci. Bodnar 407 536 2013 10.1016/j.jcis.2013.06.013 Growth dynamics of granular films produced by electrospray 

  37. J. Nanosci. Nanotechnol. Valvo 10 9 5800 2010 10.1166/jnn.2010.2445 An aerosol-based route to nanostructured powders synthesis in liquids 

  38. Pharm. Biol. Kurade 48 5 539 2010 10.3109/13880200903193336 Chemical composition and antibacterial activity of essential oils of Lantana camara, Ageratum houstonianum and Eupatorium adenophorum 

  39. J. Nanoparticle Res. Li 16 7 1 2014 10.1007/s11051-014-2513-0 An improved understanding of the dispersion of multi-walled carbon nanotubes in non-aqueous solvents 

  40. Cornelissen vol 6 6 2010 Friction measurements on carbon fibre tows 

  41. Compos. Sci. Technol. Kafi 94 89 2014 10.1016/j.compscitech.2014.01.011 Effect of surface functionality of PAN-based carbon fibres on the mechanical performance of carbon/epoxy composites 

  42. Carbon Servinis 54 0 378 2013 10.1016/j.carbon.2012.11.051 Surface functionalization of unsized carbon fiber using nitrenes derived from organic azides 

  43. J. Mech. Phys. Solids Kelly 13 6 329 1965 10.1016/0022-5096(65)90035-9 Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum 

  44. Compos. Sci. Technol. Beyerlein 56 1 75 1996 10.1016/0266-3538(95)00131-X Statistics for the strength and size effects of microcomposites with four carbon fibers in epoxy resin 

  45. J. Colloid Interface Sci. Song 197 1 68 1998 10.1006/jcis.1997.5218 A generalized drop length-height method for determination of contact angle in drop-on-fiber systems 

  46. Adv. Drug Deliv. Rev. Jones 64 3 285 2012 10.1016/j.addr.2011.12.015 The use of inverse gas chromatography for the study of lactose and pharmaceutical materials used in dry powder inhalers 

  47. Van Oss 2006 Interfacial Forces in Aqueous Media 

  48. Drug Dev. Ind. Pharm. Traini 34 9 992 2008 10.1080/03639040802154889 The influence of lactose pseudopolymorphic form on salbutamol sulfate-lactose interactions in DPI formulations 

  49. Carbon Agnihotri 49 9 3098 2011 10.1016/j.carbon.2011.03.032 Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites 

  50. Ehrenstein 2011 Polymer Werkstoffe. Munchen 

  51. Int. J. Plast. Technol. Haspel 19 2 333 2015 10.1007/s12588-015-9122-3 Characterization of the interfacial shear strength of glass-fiber reinforced polymers made from novel RTM processes 

  52. Carbon Schaefer 49 8 2750 2011 10.1016/j.carbon.2011.02.070 Effects of electrophoretically deposited carbon nanofibers on the interface of single carbon fibers embedded in epoxy matrix 

  53. Acs Appl. Mater. Interfaces Zhang 4 3 1543 2012 10.1021/am201757v Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide 

  54. J. Compos. Mater. Kim 36 15 1825 2002 10.1177/0021998302036015243 Observations of fiber fracture and interfacial debonding phenomena using the fragmentation test in single fiber composites 

  55. J. Adhes. Sci. Technol. Neimark 13 10 1137 1999 10.1163/156856199X00839 Thermodynamic equilibrium and stability of liquid films and droplets on fibers 

  56. Nano Lett. Tran 8 9 2744 2008 10.1021/nl801209g Direct measurement of the wetting behavior of individual carbon nanotubes by polymer melts: the key to carbon nanotube?polymer composites 

  57. Composites Herrera-Franco 23 1 2 1992 10.1016/0010-4361(92)90282-Y Comparison of methods for the measurement of fibre/matrix adhesion in composites 

  58. J. Nanosci. Nanotechnol. Namkhang 15 7 5410 2015 10.1166/jnn.2015.9874 Synthesis of copper-based nanostructured catalysts on SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 supports for no reduction 

  59. J. Am. Chem. Soc. Walton 129 27 8552 2007 10.1021/ja071174k Applicability of the BET method for determining surface areas of microporous metal?organic frameworks 

  60. Drug Dev. Ind. Pharm. Thielmann 33 11 1240 2007 10.1080/03639040701378035 Determination of the surface energy distributions of different processed lactose 

  61. Eur. J. Pharm. Sci. Das 43 4 325 2011 10.1016/j.ejps.2011.05.012 Use of surface energy distributions by inverse gas chromatography to understand mechanofusion processing and functionality of lactose coated with magnesium stearate 

  62. Carbon Liu 55 0 377 2013 10.1016/j.carbon.2012.12.056 Effects of carbon nanotubes grafted on a carbon fiber surface on their interfacial properties with the matrix in composites 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로