$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Wave-Tunable Lattice Equivalents toward Micro- and Nanomanipulation

Nano letters : a journal dedicated to nanoscience and nanotechnology, v.16 no.10, 2016년, pp.6472 - 6479  

Kim, Hyeohn (Department of Materials Science and Engineering, Yonsei University, Seoul 120-749,) ,  Kim, Taehoon (Department of Materials Science and Engineering, Yonsei University, Seoul 120-749,) ,  Kim, Dohun (Department of Physics and Astronomy, Seoul National University, Seoul 08826,) ,  Shim, Wooyoung (Department of Materials Science and Engineering, Yonsei University, Seoul 120-749,)

Abstract AI-Helper 아이콘AI-Helper

The assembly of micro- and nanomaterials is a key issue in the development of potential bottom-up construction of building blocks, but creating periodic arrays of such materials in an efficient and scalable manner still remains challenging. Here, we show that a cymatic assembly approach in which mic...

주제어

참고문헌 (58)

  1. Smith, W. F.; Hashemi, J.Foundations of Materials Science and Engineering,5thed.McGraw-Hill:New York, 2011; p84. 

  2. Deshpande, Sameer, Patil, Swanand, Kuchibhatla, Satyanarayana VNT, Seal, Sudipta. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Applied physics letters, vol.87, no.13, 133113-.

  3. Yu, Guihua, Lieber, Charles M.. Assembly and integration of semiconductor nanowires for functional nanosystems. Pure and applied chemistry. : Chimie pure et appliqueé, vol.82, no.12, 2295-2314.

  4. Lu, Wei, Lieber, Charles M. Semiconductor nanowires. Journal of physics. D, applied physics, vol.39, no.21, R387-R406.

  5. Whang, D., Jin, S., Wu, Y., Lieber, C. M.. Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.3, no.9, 1255-1259.

  6. Pevzner, Alexander, Engel, Yoni, Elnathan, Roey, Ducobni, Tamir, Ben-Ishai, Moshit, Reddy, Koteeswara, Shpaisman, Nava, Tsukernik, Alexander, Oksman, Mark, Patolsky, Fernando. Knocking Down Highly-Ordered Large-Scale Nanowire Arrays. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.10, no.4, 1202-1208.

  7. Liu, Jia, Xie, Chong, Dai, Xiaochuan, Jin, Lihua, Zhou, Wei, Lieber, Charles M.. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proceedings of the National Academy of Sciences of the United States of America, vol.110, no.17, 6694-6699.

  8. Lu, Wei, Lieber, Charles M.. Nanoelectronics from the bottom up. Nature materials, vol.6, no.11, 841-850.

  9. Santhanam, V., Andres, R. P.. Microcontact Printing of Uniform Nanoparticle Arrays. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.4, no.1, 41-44.

  10. Cucinotta, Fabio, Popović, Zoran, Weiss, Emily A., Whitesides, George M., De Cola, Luisa. Microcontact Transfer Printing of Zeolite Monolayers. Advanced materials, vol.21, no.10, 1142-1145.

  11. Kraus, Tobias, Malaquin, Laurent, Schmid, Heinz, Riess, Walter, Spencer, Nicholas D., Wolf, Heiko. Nanoparticle printing with single-particle resolution. Nature nanotechnology, vol.2, no.9, 570-576.

  12. Chen, Peng-Cheng, Liu, Xiaolong, Hedrick, James L., Xie, Zhuang, Wang, Shunzhi, Lin, Qing-Yuan, Hersam, Mark C., Dravid, Vinayak P., Mirkin, Chad A.. Polyelemental nanoparticle libraries. Science, vol.352, no.6293, 1565-1569.

  13. Chai, Jinan, Huo, Fengwei, Zheng, Zijian, Giam, Louise R., Shim, Wooyoung, Mirkin, Chad A.. Scanning probe block copolymer lithography. Proceedings of the National Academy of Sciences of the United States of America, vol.107, no.47, 20202-20206.

  14. Duan, Xiangfeng, Huang, Yu, Cui, Yi, Wang, Jianfang, Lieber, Charles M.. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, vol.409, no.6816, 66-69.

  15. Freer, Erik M., Grachev, Oleg, Duan, Xiangfeng, Martin, Samuel, Stumbo, David P.. High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nature nanotechnology, vol.5, no.7, 525-530.

  16. Hangarter, C. M., Myung, N. V.. Magnetic Alignment of Nanowires. Chemistry of materials : a publication of the American Chemical Society, vol.17, no.6, 1320-1324.

  17. Pauzauskie, Peter J., Radenovic, Aleksandra, Trepagnier, Eliane, Shroff, Hari, Yang, Peidong, Liphardt, Jan. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature materials, vol.5, no.2, 97-101.

  18. Agarwal, Ritesh, Ladavac, Kosta, Roichman, Yael, Yu, Guihua, Lieber, Charles M., Grier, David G.. Manipulation and assembly of nanowires with holographic optical traps. Optics express, vol.13, no.22, 8906-.

  19. Gates, B. D., Xu, Q., Stewart, M., Ryan, D., Willson, C. G., Whitesides, G. M.. New Approaches to Nanofabrication: Molding, Printing, and Other Techniques. Chemical reviews, vol.105, no.4, 1171-1196.

  20. Rao, Saleem G., Huang, Ling, Setyawan, Wahyu, Hong, Seunghun. Nanotube electronics: Large-scale assembly of carbon nanotubes. Nature, vol.425, no.6953, 36-37.

  21. Macfarlane, Robert J., Lee, Byeongdu, Jones, Matthew R., Harris, Nadine, Schatz, George C., Mirkin, Chad A.. Nanoparticle Superlattice Engineering with DNA. Science, vol.334, no.6053, 204-208.

  22. Javey, A., Nam, S.-W., Friedman, R. S., Yan, H., Lieber, C. M.. Layer-by-Layer Assembly of Nanowires for Three-Dimensional, Multifunctional Electronics. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.7, no.3, 773-777.

  23. Yu, Guihua, Cao, Anyuan, Lieber, Charles M.. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nature nanotechnology, vol.2, no.6, 372-377.

  24. Huang, Yu, Duan, Xiangfeng, Wei, Qingqiao, Lieber, Charles M.. Directed Assembly of One-Dimensional Nanostructures into Functional Networks. Science, vol.291, no.5504, 630-633.

  25. Tao, A., Kim, F., Hess, C., Goldberger, J., He, R., Sun, Y., Xia, Y., Yang, P.. Langmuir−Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.3, no.9, 1229-1233.

  26. Zhao, Yunlong, Yao, Jun, Xu, Lin, Mankin, Max N., Zhu, Yinbo, Wu, Hengan, Mai, Liqiang, Zhang, Qingjie, Lieber, Charles M.. Shape-Controlled Deterministic Assembly of Nanowires. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.16, no.4, 2644-2650.

  27. Yao, Jun, Yan, Hao, Lieber, Charles M.. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nature nanotechnology, vol.8, no.5, 329-335.

  28. Rogers, Priscilla, Gralinski, Ian, Galtry, Cameron, Neild, Adrian. Selective particle and cell clustering at air-liquid interfaces within ultrasonic microfluidic systems. Microfluidics and Nanofluidics, vol.14, no.3, 469-477.

  29. Johansson, Linda, Enlund, Johannes, Johansson, Stefan, Katardjiev, Ilia, Yantchev, Ventsislav. Surface acoustic wave induced particle manipulation in a PDMS channel-principle concepts for continuous flow applications. Biomedical microdevices, vol.14, no.2, 279-289.

  30. Oberti, S., Neild, A., Quach, R., Dual, J.. The use of acoustic radiation forces to position particles within fluid droplets. Ultrasonics, vol.49, no.1, 47-52.

  31. GLYNNE-JONES, Peter, J. BOLTRYK, Rosemary, HILL, Martyn, ZHANG, Fan, DONG, Liqin, WILKINSON, James S., MELVIN, Tracy, R. HARRIS, Nicholas, BROWN, Tom. Flexible Acoustic Particle Manipulation Device with Integrated Optical Waveguide for Enhanced Microbead Assays. Analytical sciences : The International Journal of the Japan Society for Analytical Chemistry, vol.25, no.2, 285-291.

  32. Hultstrom, J., Manneberg, O., Dopf, K., Hertz, H.M., Brismar, H., Wiklund, M.. Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip. Ultrasound in medicine & biology, vol.33, no.1, 145-151.

  33. Hill, Martyn, Shen, Yijun, Hawkes, Jeremy J.. Modelling of layered resonators for ultrasonic separation. Ultrasonics, vol.40, no.1, 385-392.

  34. Petersson, Filip, Nilsson, Andreas, Holm, Cecilia, Jönsson, Henrik, Laurell, Thomas. Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab on a chip, vol.5, no.1, 20-22.

  35. Huang, Yan Y., Knowles, Tuomas P. J., Terentjev, Eugene M.. Strength of Nanotubes, Filaments, and Nanowires From Sonication-Induced Scission. Advanced materials, vol.21, no.38, 3945-3948.

  36. 10.1002/1521-4095(200102)13:4<267::AID-ADMA267>3.0.CO;2-9 

  37. Li, Mingwei, Bhiladvala, Rustom B., Morrow, Thomas J., Sioss, James A., Lew, Kok-Keong, Redwing, Joan M., Keating, Christine D., Mayer, Theresa S.. Bottom-up assembly of large-area nanowire resonator arrays. Nature nanotechnology, vol.3, no.2, 88-92.

  38. Gedge, Michael, Hill, Martyn. Acoustofluidics 17: Theory and applications of surface acoustic wave devices for particle manipulation. Lab on a chip, vol.12, no.17, 2998-.

  39. Tan, Ming K., Friend, James R., Matar, Omar K., Yeo, Leslie Y.. Capillary wave motion excited by high frequency surface acoustic waves. Physics of fluids, vol.22, no.11, 112112-.

  40. Christiansen, Bo, Alstro?m, Preben, Levinsen, Mogens T.. Ordered capillary-wave states: Quasicrystals, hexagons, and radial waves. Physical review letters, vol.68, no.14, 2157-2160.

  41. Falkovich, G., Weinberg, A., Denissenko, P., Lukaschuk, S.. Surface tension: Floater clustering in a standing wave. Nature, vol.435, no.7045, 1045-1046.

  42. Denissenko, P., Falkovich, G., Lukaschuk, S.. How Waves Affect the Distribution of Particles that Float on a Liquid Surface. Physical review letters, vol.97, no.24, 244501-.

  43. 10.1007/978-1-4757-3822-3 Rossing, T. D.; Fletcher, N. H.Principles of Vibration and Sound;Springer Science+Business Media New York, Inc.:New York, 2004; pp65-88. 

  44. Ijet Oh Y. J. 434 4 2012 10.7763/IJET.2012.V4.404 

  45. Cymatics Jenny H. 2001 

  46. Kreyszig, E.Advanced Engineering Mathematics,10thed.John Wiley & Sons, Inc.:New York, 2011; pp593-597. 

  47. Kreyszig, E.Advanced Engineering Mathematics,10thed.John Wiley & Sons, Inc.:New York, 2011; pp582-583. 

  48. Yunker, Peter J., Still, Tim, Lohr, Matthew A., Yodh, A. G.. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, vol.476, no.7360, 308-311.

  49. Deegan, Robert D., Bakajin, Olgica, Dupont, Todd F., Huber, Greb, Nagel, Sidney R., Witten, Thomas A.. Capillary flow as the cause of ring stains from dried liquid drops. Nature, vol.389, no.6653, 827-829.

  50. Shen, Xiaoying, Ho, Chih-Ming, Wong, Tak-Sing. Minimal Size of Coffee Ring Structure. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.114, no.16, 5269-5274.

  51. Popov, Yuri O.. Evaporative deposition patterns: Spatial dimensions of the deposit. Physical review. E, Statistical, nonlinear, and soft matter physics, vol.71, no.3, 036313-.

  52. Bigioni, Terry P., Lin, Xiao-Min, Nguyen, Toan T., Corwin, Eric I., Witten, Thomas A., Jaeger, Heinrich M.. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nature materials, vol.5, no.4, 265-270.

  53. Bazargan, V.Effect of substrate cooling and droplet shape and composition on the droplet evaporation and the deposition of particles. Unpublished Ph.D. Dissertation, Department of Mechanical Engineering, University of British Columbia, 2014; p83. 

  54. Podesta, M. D.Understanding the Properties of Matter;Taylor & Francis Inc.:New York, 2002; p295. 

  55. Yamamoto, M., Nakajima, K.. A study of the physical adhesive state between solids. Wear: An international journal on the science and technology of friction, lubrication and wear, vol.70, no.3, 321-327.

  56. Whitehill, James, Neild, Adrian, Ng, Tuck Wah, Stokes, Mark. Collection of suspended particles in a drop using low frequency vibration. Applied physics letters, vol.96, no.5, 053501-.

  57. Kenyon, Kern E.. Capillary waves understood by an elementary method. Journal of oceanography, vol.54, no.4, 343-346.

  58. MacDowell, L.G., Benet, J., Katcho, N.A., Palanco, J.M.G.. Disjoining pressure and the film-height-dependent surface tension of thin liquid films: New insight from capillary wave fluctuations. Advances in colloid and interface science, vol.206, 150-171.

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로