$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Residual strength of thermally modified Scots pine after fatigue testing in flexure

European journal of wood and wood products, v.74 no.6, 2016년, pp.875 - 884  

Sharapov, Evgenii ,  Mahnert, Karl-Christian ,  Militz, Holger

초록이 없습니다.

참고문헌 (60)

  1. Can J Chem Eng N Abatzoglou 68 4 627 1990 10.1002/cjce.5450680414 Abatzoglou N, Koeberle PG, Chornet E, Overend RP, Koukios EG (1990) Dilute acid hydrolysis of lignocellulosics: an application to medium consistency suspensions of hardwoods using a plug flow reactor. Can J Chem Eng 68(4):627-638 

  2. J Materal Sci M Arnold 45 669 2010 10.1007/s10853-009-3984-8 Arnold M (2010) Effect of moisture on the bending properties of thermally modified beech and spruce. J Materal Sci 45:669-680 

  3. Bach L (1975) Frequency-dependent fracture in wood under pulsating loading. In: FPRS-Annual meeting Proceedings, 15 June, 1975, Portland, Oregon, USA 

  4. Holz Roh Werkst Z Bao 54 6 377 1996 10.1007/s001070050204 Bao Z, Eckelman C, Gibson H (1996) Fatigue strength and allowable design stresses for some wood composites used in furniture. Holz Roh Werkst 54(6):377-382 

  5. Holzforschung P Bekhta 57 5 539 2003 10.1515/HF.2003.080 Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5):539-546 

  6. J Wood Sci TRH Bhuiyan 46 431 2000 10.1007/BF00765800 Bhuiyan TRH, Sobue N (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J Wood Sci 46:431-436 

  7. J Mater Sci P Bonfield 26 17 4765 1991 10.1007/BF00612416 Bonfield P, Ansell M (1991) Fatigue properties of wood in tension, compression and shear. J Mater Sci 26(17):4765-4773 

  8. Boonstra MJ (2008) A two-stage thermal modification of wood. Ph.D. thesis. Ghent University and Université Henry Poincaré, Nancy, p 297 

  9. Ann For Sci MJ Boonstra 64 7 679 2007 10.1051/forest:2007048 Boonstra MJ, Van Acker J, Tjeerdsma BF, Kegel EV (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann For Sci 64(7):679-690 

  10. J Jap Wood Res Soc P-A Bordonne 33 8 623 1987 Bordonne P-A, Okuyama T, Marsoem SN (1987) Mechanical responses of wood to repeated loading III. Mokuzai Gakkaishi. J Jap Wood Res Soc 33(8):623-629 

  11. Clorius C (2002) Fatigue in Wood. An investigation in tension perpendicular to the grain. Ph.D. Thesis. Technical University of Denmark, Denmark 

  12. Wood Sci Technol C Clorius 34 1 21 2000 10.1007/s002260050005 Clorius C, Pedersen M, Hoffmeyer P, Damkilde L (2000) Compressive fatigue in wood. Wood Sci Technol 34(1):21-37 

  13. DIN 52183 1977 Testing of wood; determination of moisture content DIN 52183 (1977) Testing of wood; determination of moisture content. DIN German Institute for Standardization, Berlin (in German) 

  14. DIN 52186 1978 Testing of wood; bending test DIN 52186 (1978) Testing of wood; bending test. DIN German Institute for Standardization, Berlin (in German) 

  15. Dobraszczyk B (1983) An investigation into the fracture and fatigue behaviour of wood. Ph.D. Thesis. University of Bath, Bath, UK (Cited in Gong 2002) 

  16. Wood Sci Technol B Esteves 41 3 193 2007 10.1007/s00226-006-0099-0 Esteves B, Marques AV, Domingos I, Pereira H (2007) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci Technol 41(3):193-207 

  17. D Fengel 2003 Wood chemistry, ultrastructure, reactions Fengel D, Wegener G (2003) Wood chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin 

  18. Feodosiev VI (1999) Soprotivlenie materialov [Strength of materials]. Moscow State Technical University named after Bauman Publ., Moscow, p 592 (in Russian) 

  19. Holz Roh Werkst W Gillwald 19 3 86 1961 10.1007/BF02609520 Gillwald W (1961) Beitrag zur Bestimmung der Formänderung von Holz unter schwingender Beanspruchung. (On the determination of the deformation of wood under oscillating load). Holz Roh Werkst 19(3):86-92 (in German) 

  20. Gong M (2002) Failure of spruce under compressive low-cycle fatigue loading parallel to grain. Ph.D. Thesis. The University of New Brunswick, Canada 

  21. J Mater Civil Eng M Gong 15 93 2003 10.1061/(ASCE)0899-1561(2003)15:1(93) Gong M, Smith I (2003) Effect of waveform and loading sequence on low-cycle compressive fatigue life of spruce. J Mater Civil Eng 15:93-99 

  22. M Gong 1108 2008 Proceedings of 10th World Conference on Timber Engineering (WCTE 2008) Gong M, Li L, Smith I (2008) Waveform effect on fatigue behaviour of laterally loaded nailed timber joints. Proceedings of 10th World Conference on Timber Engineering (WCTE 2008). Miyazaki, Japan, pp 1108-1116 

  23. GOST 16483.9 (1999) Drevesina. Metody opredeleniya modulya uprugosti pri staticheskom izgibe [Wood. Methods for determination of modulus of elasticity in static bending]. Standards publisher, Moscow (in Russian) 

  24. GOST 50.1.040 (2002) Statisticheskie metody. Planirovanie eksperimentov. Terminy i opredeleniya [Statistical methods. Design of experiments. Terms and definitions]. Standards publisher, Moscow (in Russian) 

  25. Polym Degrad Stabil M Hakkou 91 2 393 2006 10.1016/j.polymdegradstab.2005.04.042 Hakkou M, Petrissans M, Gerardin P, Zoulalian A (2006) Investigations of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stabil 91(2):393-397 

  26. 10.1002/0470021748 Hill C (2006) Wood modification. Wiley, Chichester 

  27. ITWA (2003) ThermoWood Handbook. International Thermowood Association. Helsinki, Finland 

  28. Holz Roh Werkst DP Kamdem 58 4 253 2000 10.1007/s001070050420 Kamdem DP, Pizzi A, Triboulot MC (2000) Heat-treated timber: potentially toxic byproducts presence and extent of wood cell wall degradation. Holz Roh Werkst 58(4):253-257 

  29. Wood Res V Kamperidou 59 2 373 2014 Kamperidou V, Barboutis I, Vasileiou V (2014) Influence of thermal treatment on mechanical strength of Scots pine (Pinus sylvestris L.) wood. Wood Res 59(2):373-378 

  30. Bioresources D Kocaefe 3 2 517 2008 Kocaefe D, Poncsak S, Boluk Y (2008) Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. Bioresources 3(2):517-537 

  31. Holz Roh Werkst F Kollman 19 3 113 1961 10.1007/BF02609523 Kollman F, Krech H (1961) Fracture range and resistance of particleboard. Holz Roh Werkst 19(3):113-118 (in German) 

  32. F Kollmann 1048 1951 Technologie des Holzes und der Holzwerkstoffe (Technology of wood and wood based composites) (in German) Kollmann F (1951) Technologie des Holzes und der Holzwerkstoffe (Technology of wood and wood based composites). Springer Verlag, Berlin, p 1048 (in German) 

  33. Kommers WJ (1943) The fatigue behaviour of wood and plywood subjected to repeated and reversed bending stresses. Report No: 1327. Forest Products Laboratory, Department of Agriculture, Forest Service, Madison, WI, USA (Cited in Gong 2002) 

  34. J Wood Sci Y Kubojima 46 1 8 2000 10.1007/BF00779547 Kubojima Y, Okano T, Ohta M (2000) Bending strength and toughness of heat-treated wood. J Wood Sci 46(1):8-15 

  35. Int J Fract G Kyanka 16 6 609 1980 10.1007/BF02265220 Kyanka G (1980) Fatigue properties of wood and wood composites. Int J Fract 16(6):609-616 

  36. Lewis WC (1962) Fatigue resistance of quarter-scale bridge stringers in flexure and shear. Report No: 2236. Forest Products Laboratory, Department of Agriculture, Forest Service, Madison, WI, USA 

  37. Liu JY, Ross RJ (1995) Energy criterion for fatigue strength of wood structural members. In: Proceedings of the 1995 ASME meeting, Mechanics of Cellulosic Materials, vol. AMD 209/MD 60, Los Angeles, pp 125-133 

  38. Wood Fiber Sci JY Liu 26 1 3 1994 Liu JY, Zahn JJ, Schaffer EL (1994) Reaction rate model for the fatigue strength of wood. Wood Fiber Sci 26(1):3-10 

  39. Metsa-Kortelainen S (2011) Differences between sapwood and heartwood of thermally modified Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) under water and decay exposure. VTT Publications, Espoo. p 771 

  40. 10.1021/bk-2014-1158.ch016 Militz H, Altgen M (2014) Processes and properties of thermally modified wood manufactured in Europe. In: Schultz TP, Goodell B, Nicholas DD (eds) Deterioration and protection of sustainable biomaterials. American Chemical Society, pp 269-285 

  41. Militz H, Tjeerdsma B (2000) Heat treatment of wood by the Plato-process. In: Proceedings of Seminar “Production and development of heat treated wood in Europe”, Helsinki, Stokholm, Oslo 

  42. Nielsen LF (2008) Fatigue of viscoelastic materials such as wood with overload. DTU Byg, Danmarks Tekniske Universitet. BYG Rapport, No R-195 

  43. P Niemz 243 1993 Physik des Holzes und der Holzwerkstoffe (Physics of wood and wood-based materials) (In German) Niemz P (1993) Physik des Holzes und der Holzwerkstoffe (Physics of wood and wood-based materials). DRW-Verlag, Leinfelden-Echterdingen, p 243 (in German) 

  44. P Niemz 258 2010 Proceedings of 11th International Wood Drying Conference (IUFRO 2010) Niemz P, Hofmann T, Rétfalvi T (2010) Investigation of chemical changes in the structure of wood thermally modified. Proceedings of 11th International Wood Drying Conference (IUFRO 2010). Skelleftea, Sweden, pp 258-264 

  45. Wood Sci Technol S Poncsak 40 8 647 2006 10.1007/s00226-006-0082-9 Poncsak S, Kocaefe D, Bouazara M, Pichette A (2006) Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci Technol 40(8):647-663 

  46. Holz Roh Werkst G Rose 23 7 271 1965 10.1007/BF02605242 Rose G (1965) Das mechanische Verhalten des Kiefernholzes bei dynamischer Dauerbeanspruchung in Abhängigkeit von Belastungsart, Belastungsgröße, Feuchtigkeit und Temperatur (The mechanical behaviour of pinewood under dynamic constant stress depending on kind and amount of load, moisture content, and temperature). Holz Roh Werkst 23(7):271-284 (in German) 

  47. Sharapov ES, Mahnert KC, Korolev AS (2013) Eksperimental’nye issledovaniya fiziko-mekhanicheskikh svoistv termicheski modifitsirovannoi drevesiny sosny [Experimental researches of physical and mechanical properties of thermally treated Scots pine]. Moscow State Forest University Bulletin-Lesnoy vestnik 2(94):90-96 (in Russian) 

  48. Holzforschung H Sivonen 56 6 648 2002 10.1515/HF.2002.098 Sivonen H, Maunu SL, Sundholm F, Jamsa S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56(6):648-654 

  49. I Smith 242 2003 Fracture and fatigue in wood Smith I, Landis E, Gong M (2003) Fracture and fatigue in wood. Wiley, Chichester, p 242 

  50. 10.2172/6492500 Spera DA, Esgar JB, Gougeon M, Zuteck MD (1990) Structural properties of laminated Douglas fir/epoxy composite material. DOE/NASA Reference Publication 1236, Report No DOE/NASA/20320-76 

  51. Ind Eng Chem AJ Stamm 48 3 413 1956 10.1021/ie51398a022 Stamm AJ (1956) Thermal degradation of wood and cellulose. Ind Eng Chem 48(3):413-417 

  52. T Sugimoto 1818 2006 Proceedings of 9th World Conference on Timber Engineering (WCTE 2006) Sugimoto T, Sasaki Y (2006) Effect of loading waveform on the fatigue of structural plywood in shear through thickness. Proceedings of 9th World Conference on Timber Engineering (WCTE 2006). Portland, Oregon, pp 1818-1825 

  53. J Wood Sci T Sugimoto 53 4 296 2007 10.1007/s10086-006-0864-6 Sugimoto T, Sasaki Y, Yamasaki M (2007) Fatigue of structural plywood under cyclic shear through thickness I: fatigue process and failure criterion based on strain energy. J Wood Sci 53(4):296-302 

  54. Wood Sci Technol B Sundqvist 40 7 549 2006 10.1007/s00226-006-0071-z Sundqvist B, Karlsson O, Westermark U (2006) Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci Technol 40(7):549-561 

  55. Mokuzai Gakkaishi S Suzuki 30 799 1984 Suzuki S, Saito F (1984) Fatigue behavior of particleboard in tension perpendicular to the surface I. Effect of resin type. Mokuzai Gakkaishi 30:799-806 

  56. Eur J Wood Prod B Tjeerdsma 56 3 149 1998 10.1007/s001070050287 Tjeerdsma B, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Eur J Wood Prod 56(3):149-153 

  57. Ugolev BN (2001) Drevesinovedenie s osnovami lesnogo tovarovedeniya [Wood science with the basics of forest merchandising]. Moscow. p 368 (in Russian) 

  58. Wood Mat Sci Eng C Welzbacher 2 1 4 2007 10.1080/17480270701267504 Welzbacher C, Rapp AO (2007) Durability of thermally modified timber from industrial-scale processes in different use classes: results from laboratory and field tests. Wood Mat Sci Eng 2(1):4-14 

  59. Carbohydr Polym H Wikberg 58 4 461 2004 10.1016/j.carbpol.2004.08.008 Wikberg H, Maunu LS (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydr Polym 58(4):461-466 

  60. Int Wood Prod J W Willems 6 1 21 2015 10.1179/2042645314Y.0000000083 Willems W, Altgen M, Militz H (2015) Comparison of EMC and durability of heat treated wood from high versus low water vapour pressure reactor systems. Int Wood Prod J 6(1):21-26 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로