$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Real-Time Imaging Tracking of a Dual Fluorescent Drug Delivery System Based on Zinc Phthalocyanine-Incorporated Hydrogel

ACS biomaterials science & engineering, v.2 no.11, 2016년, pp.2001 - 2010  

Dong, Xia (Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192,) ,  Wei, Chang (Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192,) ,  Chen, Hongli (School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003,) ,  Qin, Jingwen (School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003,) ,  Liang, Jie (Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192,) ,  Kong, Deling (Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192,) ,  Liu, Tianjun (Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences &) ,  Lv, Feng

Abstract AI-Helper 아이콘AI-Helper

Real-time tracking of a drug delivery system and its therapeutic effects in vivo are crucial to designing a novel pharmaceutical system and revealing the mechanism of drug therapy. Multispectral fluorescence imaging can locate the drug and carrier simultaneously without interference. This advanced m...

주제어

참고문헌 (39)

  1. Song, H.H.G., Park, K.M., Gerecht, S.. Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Advanced drug delivery reviews, vol.79, 19-29.

  2. Censi, R., Di Martino, P., Vermonden, T., Hennink, W.E.. Hydrogels for protein delivery in tissue engineering. Journal of controlled release : official journal of the Controlled Release Society, vol.161, no.2, 680-692.

  3. Moon, Hyo Jung, Ko, Du Young, Park, Min Hee, Joo, Min Kyung, Jeong, Byeongmoon. Temperature-responsive compounds as in situ gelling biomedical materials. Chemical Society reviews, vol.41, no.14, 4860-4883.

  4. Bae, Ki Hyun, Wang, Li-Shan, Kurisawa, Motoichi. Injectable biodegradable hydrogels: progress and challenges. Journal of materials chemistry. B, Materials for biology and medicine, vol.1, no.40, 5371-.

  5. Jiang, Y., Meng, X., Wu, Z., Qi, X.. Modified chitosan thermosensitive hydrogel enables sustained and efficient anti-tumor therapy via intratumoral injection. Carbohydrate polymers, vol.144, 245-253.

  6. Sheu, M.T., Jhan, H.J., Su, C.Y., Chen, L.C., Chang, C.E., Liu, D.Z., Ho, H.O.. Codelivery of doxorubicin-containing thermosensitive hydrogels incorporated with docetaxel-loaded mixed micelles enhances local cancer therapy. Colloids and surfaces. B, Biointerfaces, vol.143, 260-270.

  7. Greenaway, Clare, Ratnaraj, Neville, Sander, Josemir W, Patsalos, Philip N. A High-Performance Liquid Chromatography Assay to Monitor the New Antiepileptic Drug Lacosamide in Patients With Epilepsy. Therapeutic drug monitoring, vol.32, no.4, 448-452.

  8. Woods, A., Patel, A., Spina, D., Riffo-Vasquez, Y., Babin-Morgan, A., de Rosales, R.T.M., Sunassee, K., Clark, S., Collins, H., Bruce, K., Dailey, L.A., Forbes, B.. In vivo biocompatibility, clearance, and biodistribution of albumin vehicles for pulmonary drug delivery. Journal of controlled release : official journal of the Controlled Release Society, vol.210, 1-9.

  9. Witt, Christian, Mäder, Karsten, Kissel, Thomas. The degradation, swelling and erosion properties of biodegradable implants prepared by extrusion or compression moulding of poly(lactide-co-glycolide) and ABA triblock copolymers. Biomaterials, vol.21, no.9, 931-938.

  10. Bruggeman, J.P., de Bruin, B.J., Bettinger, C.J., Langer, R.. Biodegradable poly(polyol sebacate) polymers. Biomaterials, vol.29, no.36, 4726-4735.

  11. Park, Mi-Ran, Cho, Chong-Su, Song, Soo-Chang. In vitro and in vivo degradation behaviors of thermosensitive poly(organophosphazene) hydrogels. Polymer degradation and stability, vol.95, no.6, 935-944.

  12. Fischerauer, S.F., Kraus, T., Wu, X., Tangl, S., Sorantin, E., Hanzi, A.C., Loffler, J.F., Uggowitzer, P.J., Weinberg, A.M.. In vivo degradation performance of micro-arc-oxidized magnesium implants: A micro-CT study in rats. Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.9, no.2, 5411-5420.

  13. Othman, Shadi F., Curtis, Evan T., Plautz, Sarah A., Pannier, Angela K., Butler, Stephanie D., Xu, Huihui. MR elastography monitoring of tissue‐engineered constructs. NMR in biomedicine, vol.25, no.3, 452-463.

  14. Solorio, L., Babin, B.M., Patel, R.B., Mach, J., Azar, N., Exner, A.A.. Noninvasive characterization of in situ forming implants using diagnostic ultrasound. Journal of controlled release : official journal of the Controlled Release Society, vol.143, no.2, 183-190.

  15. Appel, A.A., Anastasio, M.A., Larson, J.C., Brey, E.M.. Imaging challenges in biomaterials and tissue engineering. Biomaterials, vol.34, no.28, 6615-6630.

  16. Rao, J., Dragulescu-Andrasi, A., Yao, H.. Fluorescence imaging in vivo: recent advances. Current opinion in biotechnology, vol.18, no.1, 17-25.

  17. Ryu, J.H., Shin, M., Kim, S.A., Lee, S., Kim, H., Koo, H., Kim, B.S., Song, H.K., Kim, S.H., Choi, K., Kwon, I.C., Jeon, H., Kim, K.. In vivo fluorescence imaging for cancer diagnosis using receptor-targeted epidermal growth factor-based nanoprobe. Biomaterials, vol.34, no.36, 9149-9159.

  18. Yao, Defan, Lin, Zhi, Wu, Junchen. Near-Infrared Fluorogenic Probes with Polarity-Sensitive Emission for in Vivo Imaging of an Ovarian Cancer Biomarker. ACS applied materials & interfaces, vol.8, no.9, 5847-5856.

  19. Heo, Yun Jung, Shibata, Hideaki, Okitsu, Teru, Kawanishi, Tetsuro, Takeuchi, Shoji. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proceedings of the National Academy of Sciences of the United States of America, vol.108, no.33, 13399-13403.

  20. Shibata, Hideaki, Heo, Yun Jung, Okitsu, Teru, Matsunaga, Yukiko, Kawanishi, Tetsuro, Takeuchi, Shoji. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proceedings of the National Academy of Sciences of the United States of America, vol.107, no.42, 17894-17898.

  21. Liu, W.F., Ma, M., Bratlie, K.M., Dang, T.T., Langer, R., Anderson, D.G.. Real-time in vivo detection of biomaterial-induced reactive oxygen species. Biomaterials, vol.32, no.7, 1796-1801.

  22. Selvam, S., Kundu, K., Templeman, K.L., Murthy, N., Garcia, A.J.. Minimally invasive, longitudinal monitoring of biomaterial-associated inflammation by fluorescence imaging. Biomaterials, vol.32, no.31, 7785-7792.

  23. Zhang, Qingwei, Mochalin, Vadym N., Neitzel, Ioannis, Knoke, Isabel Y., Han, Jingjia, Klug, Christopher A., Zhou, Jack G., Lelkes, Peter I., Gogotsi, Yury. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials, vol.32, no.1, 87-94.

  24. Cunha-Reis, Cassilda, El Haj, Alicia J., Yang, Xuebin, Yang, Ying. Fluorescent labeling of chitosan for use in non-invasive monitoring of degradation in tissue engineering : Fluorescent chitosan for monitoring of degradation. Journal of tissue engineering and regenerative medicine, vol.7, no.1, 39-50.

  25. Hoffmann, Stefan, Vystrčilová, Lucie, Ulbrich, Karel, Etrych, Tomáš, Caysa, Henrike, Mueller, Thomas, Mäder, Karsten. Dual Fluorescent HPMACopolymers for Passive TumorTargeting with pH-Sensitive Drug Release: Synthesis and Characterizationof Distribution and Tumor Accumulation in Mice by Noninvasive MultispectralOptical Imaging. Biomacromolecules, vol.13, no.3, 652-663.

  26. Wang, Weiwei, Liu, Jinjian, Li, Chen, Zhang, Ju, Liu, Jianfeng, Dong, Anjie, Kong, Deling. Real-time and non-invasive fluorescence tracking of in vivo degradation of the thermosensitive PEGlyated polyester hydrogel. Journal of materials chemistry. B, Materials for biology and medicine, vol.2, no.26, 4185-.

  27. Zhou, Lanlan, El-Deiry, Wafik S.. Multispectral Fluorescence Imaging. The Journal of nuclear medicine : JNM, vol.50, no.10, 1563-1566.

  28. Dong, Xia, Wei, Chang, Liu, Tianjun, Lv, Feng, Qian, Zhiyong. Real-Time Fluorescence Tracking of Protoporphyrin Incorporated Thermosensitive Hydrogel and Its Drug Release in Vivo. ACS applied materials & interfaces, vol.8, no.8, 5104-5113.

  29. Lv, Feng, Li, Yanzhou, Cao, Bo, Liu, Tianjun. Galactose substituted zinc phthalocyanines as near infrared fluorescence probes for liver cancer imaging. Journal of materials science, Materials in medicine, vol.24, no.3, 811-819.

  30. Lv, F., He, X., Wu, L., Liu, T.. Lactose substituted zinc phthalocyanine: A near infrared fluorescence imaging probe for liver cancer targeting. Bioorganic & medicinal chemistry letters, vol.23, no.6, 1878-1882.

  31. Lv, Feng, Cao, Bo, Cui, Yanli, Liu, Tianjun. Zinc Phthalocyanine Labelled Polyethylene Glycol: Preparation, Characterization, Interaction with Bovine Serum Albumin and Near Infrared Fluorescence Imaging in Vivo. Molecules a journal of synthetic chemistry and natural product chemistry, vol.17, no.6, 6348-6361.

  32. Kruger, H.R., Schutz, I., Justies, A., Licha, K., Welker, P., Haucke, V., Calderon, M.. Imaging of doxorubicin release from theranostic macromolecular prodrugs via fluorescence resonance energy transfer. Journal of controlled release : official journal of the Controlled Release Society, vol.194, 189-196.

  33. Li, D., Zhang, Y.T., Yu, M., Guo, J., Chaudhary, D., Wang, C.C.. Cancer therapy and fluorescence imaging using the active release of doxorubicin from MSPs/Ni-LDH folate targeting nanoparticles. Biomaterials, vol.34, no.32, 7913-7922.

  34. Lv, F., Mao, L., Liu, T.. Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer: Preparation, characterization and fluorescence imaging in vivo. Materials science & engineering. C, Materials for biological applications, vol.43, 221-230.

  35. Gong, ChangYang, Shi, Shuai, Dong, PengWei, Kan, Bing, Gou, MaLing, Wang, XianHuo, Li, XingYi, Luo, Feng, Zhao, Xia, Wei, YuQuan, Qian, ZhiYong. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. International journal of pharmaceutics, vol.365, no.1, 89-99.

  36. Leblond, F., Davis, S.C., Valdes, P.A., Pogue, B.W.. Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. Journal of photochemistry and photobiology. B, Biology, vol.98, no.1, 77-94.

  37. Dong, Xia, Wei, Chang, Liu, Tianjun, Lv, Feng. Protoporphyrin incorporated alginate hydrogel: preparation, characterization and fluorescence imaging in vivo. RSC advances, vol.5, no.117, 96336-96344.

  38. Yang, L., Li, J., Jin, Y., Li, M., Gu, Z.. In vitro enzymatic degradation of the cross-linked poly(ε-caprolactone) implants. Polymer degradation and stability, vol.112, 10-19.

  39. Carstens, Myrra G., van Nostrum, Cornelus F., Verrijk, Ruud, de Leede, Leo G.J., Crommelin, Daan J.A., Hennink, Wim E.. A mechanistic study on the chemical and enzymatic degradation of PEG-Oligo(ϵ-caprolactone) micelles. Journal of pharmaceutical sciences : a publication of the American Pharmaceutical Association, vol.97, no.1, 506-518.

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로