$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

CO2 methanation: Optimal start‐up control of a fixed‐bed reactor for power‐to‐gas applications 원문보기

AIChE journal, v.63 no.1, 2017년, pp.23 - 31  

Bremer, Jens (Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg, 39106, Germany) ,  Rätze, Karsten H. G. (Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg, 39106, Germany) ,  Sundmacher, Kai (Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg, 39106, Germany)

Abstract AI-Helper 아이콘AI-Helper

Utilizing volatile renewable energy sources (e.g., solar, wind) for chemical production systems requires a deeper understanding of their dynamic operation modes. Taking the example of a methanation reactor in the context of power‐to‐gas applications, a dynamic optimization approach is us...

주제어

참고문헌 (34)

  1. Güttel R. Study of unsteady‐state operation of methanation by modeling and simulation . Chem Eng Technol. 2013 ; 36 ( 10 ): 1675 – 1682 . 

  2. Rönsch S , Schneider J , Matthischke S , Schlüter M , Götz M , Lefebvre J , Prabhakaran P , Bajohr S. Review on methanation—from fundamentals to current projects . Fuel 2016 ; 166 : 276 – 296 . 

  3. Parlikkad NR , Chambrey S , Fongarland P , Fatah N , Khodakov A , Capela S , Guerrini O. Modeling of fixed bed methanation reactor for syngas production: operating window and performance characteristics . Fuel 2013 ; 107 : 254 – 260 . 

  4. Jürgensen L , Ehimen EA , Born J , Holm‐Nielsen JB. Dynamic biogas upgrading based on the Sabatier process: thermodynamic and dynamic process simulation . Bioresour Technol. 2015 ; 178 : 323 – 329 . 

  5. El‐Sibai A , Rihko‐Struckmann L , Sundmacher K. Synthetic methane from CO2: dynamic optimization of the Sabatier process for power‐to‐gas applications. In: 12th International Symposium on Process Systems Engineering (PSE) & 25th European Symposium on Computer Aided Process Engineering (ESCAPE) . 2015 ; 37 : 1157 – 1162 , Copenhagen, Denmark. 

  6. Schlereth D , Hinrichsen O. A fixed‐bed reactor modeling study on the methanation of CO 2 . Chem Eng Res Des. 2014 ; 92 ( 4 ): 702 – 712 . 

  7. Li X , Yang B , Zhang Y. Dynamics and control study on the low temperature methanation reactor with mass and heat recycle . J Process Control. 2013 ; 23 ( 10 ): 1360 – 1370 . 

  8. Rönsch S , Matthischke S , Müller M , Eichler P. Dynamische simulation von reaktoren zur festbettmethanisierung . Chem Ing Tech. 2014 ; 86 ( 8 ): 1198 – 1204 . 

  9. Zhang G , Sun T , Peng J , Wang S , Wang S. A comparison of Ni/SiC and Ni/Al2O3 catalyzed total methanation for production of synthetic natural gas . Appl Catal A General. 2013 ; 462 ( 463 ): 75 – 81 . 

  10. Brightling J , Farnell P , Foster C , Beyer F. Steam reforming—50 years of development and the challenges for the next 50 years. In AIChE 50th Annual Safety in Ammonia Plants and Related Facilities Symposium , 2005 ; 46 : 190 – 201 , Toronto, Canada. 

  11. VDI. VDI Heat Atlas . Berlin, Heidelberg : VDI‐Buch‐Springer , 2010 . 

  12. Xu J , Froment GF. Methane steam reforming: II. Diffusional limitations and reactor simulation . AIChE J. 1989 ; 35 ( 1 ): 97 – 103 . 

  13. Oliveira EL , Grande CA , Rodrigues AE. Methane steam reforming in large pore catalyst . Chem Eng Sci. 2010 ; 65 ( 5 ): 1539 – 1550 . 

  14. De Falco M , Di Paola L , Marrelli L. Heat transfer and hydrogen permeability in modelling industrial membrane reactors for methane steam reforming . Int J Hydrogen Energy 2007 ; 32 ( 14 ): 2902 – 2913 . 

  15. Adams TA , Barton PI. A dynamic two‐dimensional heterogeneous model for water gas shift reactors . Int J Hydrogen Energy 2009 ; 34 ( 21 ): 8877 – 8891 . 

  16. Fogler H. Elements of Chemical Reaction Engineering . Prentice Hall International Series in the Physical and Chemical Engineering Sciences . New Jersey, USA: Pearson Education, 2016 . 

  17. Esche E , Arellano‐Garcia H , Biegler L. Optimal operation of a membrane reactor network . AIChE J. 2014 ; 60 ( 1 ): 170 – 180 . 

  18. Tsotsas E , Schlünder E. On axial dispersion in packed beds with fluid flow: über die axiale dispersion in durchströmten festbetten . Chem Eng Process Process Intensif. 1988 ; 24 ( 1 ): 15 – 31 . 

  19. Kee R , Coltrin M , Glarborg P. Chemically Reacting Flow: Theory and Practice . New Jersey, USA : Wiley , 2005 . 

  20. Fuller EN , Schettler PD , Giddins JC. A new method for prediction of binary gas‐phase diffusion coefficients . Ind Eng Chem. 1966 ; 58 ( 5 ): 18 – 27 . 

  21. Bauer R , Schlünder E.‐U. Effective radial thermal conductivity of packing in gas flow. Part II. Thermal conductivity of the packing fraction without gas flow . Int Chem Eng. 1978 ; 18 ( 2 ): 189 – 204 . 

  22. Poling BE , Prausnitz JM , O'connell JP. The Properties of Gases and Liquids . New York, USA : McGraw‐Hill , 2001 . 

  23. Xu J , Froment GF. Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics . AIChE J. 1989 ; 35 ( 1 ): 88 – 96 . 

  24. Kopyscinski J. Production of Synthetic Natural Gas in a Fluidized Bed Reactor. Doctoral dissertation, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 18800, 2010. 

  25. Ghouse JH , Adams TA. A multi‐scale dynamic two‐dimensional heterogeneous model for catalytic steam methane reforming reactors . Int J Hydrogen Energy. 2013 ; 38 ( 24 ): 9984 – 9999 . 

  26. Wesenberg MH , Svendsen HF. Mass and heat transfer limitations in a heterogeneous model of a gas‐heated steam reformer . Ind Eng Chem Res. 2007 ; 46 ( 3 ): 667 – 676 . 

  27. Nashtaee PS , Khoshandam B. Noncatalytic gas‐solid reactions in packed bed reactors: a comparison between numerical and approximate solution techniques . Chem Eng Commun. 2014 ; 201 ( 1 ): 120 – 152 . 

  28. Andersson J. A General‐Purpose Software Framework for Dynamic Optimization. PhD thesis, Arenberg Doctoral School, KU Leuven; Department of Electrical Engineering (ESAT/SCD) and Optimization in Engineering Center, Kasteelpark Arenberg 10, 3001‐Heverlee, Belgium, 2013 . 

  29. Wächter A , Biegler LT. On the implementation of an interior‐point filter line‐search algorithm for large‐scale nonlinear programming . Math Program. 2006 ; 106 ( 1 ): 25 – 57 . 

  30. HSL . A collection of Fortran codes for large‐scale scientific computation. 2007 . http://www.hsl.rl.ac.uk. 

  31. Biegler LT. An overview of simultaneous strategies for dynamic optimization . Chem Eng Process Process Intensif. 2007 ; 46 ( 11 ): 1043 – 1053 . 

  32. Gao J , Wang Y , Ping Y , Hu D , Xu G , Gu F , Su F. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas . RSC Adv. 2012 ; 2 ( 6 ): 2358 – 2368 . 

  33. Kiewidt L , Thöming J. Predicting optimal temperature profiles in single‐stage fixed‐bed reactors for CO2‐methanation . Chem Eng Sci. 2015 ; 132 : 59 – 71 . 

  34. Bremer J , Goyal P , Feng L , Benner P , Sundmacher K. Nonlinear model order reduction for catalytic tubular reactors. In: 26th European Symposium on Computer Aided Process Engineering ; vol. 38 of Computer Aided Chemical Engineering . Portorož, Slovenia : Elsevier, 2016 : 2373 – 2378 . 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로