$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Three-dimensional transient thermoelectric currents in deep penetration laser welding of austenite stainless steel

Optics and lasers in engineering, v.91, 2017년, pp.196 - 205  

Chen, X. ,  Pang, S. ,  Shao, X. ,  Wang, C. ,  Xiao, J. ,  Jiang, P.

Abstract AI-Helper 아이콘AI-Helper

The existence of thermoelectric currents (TECs) in workpieces during the laser welding of metals has been common knowledge for more than 15 years. However, the time-dependent evolutions of TECs in laser welding remain unclear. The present study developed a novel three-dimensional theoretical model o...

주제어

참고문헌 (37)

  1. J Fluid Mech Shercliff 91 231 1979 10.1017/S0022112079000136 Thermoelectric magnetohydrodynamics 

  2. Sov Phys J Anatychuk 12 801 1969 10.1007/BF00814191 Thermoelectric eddy currents and transverse thermal emf in zonally inhomogeneous plates 

  3. J Phys D: Appl Phys Paulini 23 486 1990 10.1088/0022-3727/23/5/004 Beam deflection in electron beam welding by thermoelectric eddy currents 

  4. J Heat Trans Wei 112 3 714 1990 10.1115/1.2910445 Electron beam deflection when welding dissimilar metals 

  5. Weld J Dragunov 1990 16 466 2002 10.1080/09507110209549560 Electron beam welding of dissimilar alloys under conditions of the generation of thermoelectric current 

  6. Acta Mater Li 60 3321 2012 10.1016/j.actamat.2012.02.019 Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field 

  7. Mater Lett Li 161 595 2015 10.1016/j.matlet.2015.09.026 Effect of a transverse magnetic field on the growth of equiaxed grains during directional solidification 

  8. Metall Mater Trans A Wang 4A 1169 2016 10.1007/s11661-015-3277-6 Thermoelectric magnetohydrodynamic flows and their induced change of solid-liquid interface shape in static magnetic field-assisted directional solidification 

  9. Weld J Kern 79 72-s 2000 Magneto-fluid dynamic control of seam quality in CO2 laser beam welding 

  10. J Heat Transf Wei 119 832 1997 10.1115/1.2824190 Three-dimensional electron-beam deflection and missed joint in welding and dissimilar metals 

  11. Metall Mater Trans B Wei 33B 765 2002 10.1007/s11663-002-0030-5 Missed joint induced by thermoelectric magnetic field in electron-beam welding dissimilar metals experiment and scale analysis 

  12. 10.1117/12.738838 Ambrosy G, Avilov V, Berger P, Hugel H. Laser induced plasma as a source for an intensive current to produce electromagnetic forces in the weld pool. In: Proceedings of the XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers. SPIE, Gmunden, Austria. Vol. 6346, 63461Q1-8; 2007. 

  13. J Laser Appl Lange 21 82 2009 10.2351/1.3120213 Thermoelectric currents in laser induced melts pools 

  14. Opt Lasers Eng Tenner 64 32 2015 10.1016/j.optlaseng.2014.07.009 Analysis of the correlation between plasma plume and keyhole behavior in laser metal welding for the modeling of the keyhole geometry 

  15. Opt Lasers Eng Luo 64 59 2015 10.1016/j.optlaseng.2014.07.004 Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding 

  16. Opt Lasers Eng Ai 86 62 2016 10.1016/j.optlaseng.2016.05.011 Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials 

  17. Metall Mater Trans A Ki 33 1817 2002 10.1007/s11661-002-0190-6 Modeling of laser keyhole welding: part I. Mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution 

  18. J Phys D: Appl Phys Pang 44 025301 2011 10.1088/0022-3727/44/2/025301 A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding 

  19. J Phys D: Appl Phys Zhao 44 485302 2011 10.1088/0022-3727/44/48/485302 Modelling of keyhole dynamics and porosity formation considering the adaptive keyhole shape and three-phase coupling during deep-penetration laser welding 

  20. J Mater Process Technol Cho 212 262 2012 10.1016/j.jmatprotec.2011.09.011 Numerical simulation of molten pool dynamics in high power disk laser welding 

  21. J Laser Appl Courtois 26 042001 2014 10.2351/1.4886835 A complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser welding 

  22. J Mater Process Technol Zhang 214 1710 2014 10.1016/j.jmatprotec.2014.03.016 Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser 

  23. J Mater Process Technol Meng 214 1658 2014 10.1016/j.jmatprotec.2014.03.011 Porosity formation mechanism and its prevention in laser lap welding for T-joints 

  24. J Phys D: Appl Phys Tan 47 345501 2014 10.1088/0022-3727/47/34/345501 Analysis of multi-phase interaction and its effects on keyhole dynamics with a multi-physics numerical model 

  25. Metall Mater Trans A Pang 45 2808 2014 10.1007/s11661-014-2231-3 A quantitative model of keyhole instability induced porosity in laser welding of titanium alloy 

  26. Opt Lasers Eng Pang 74 47 2015 10.1016/j.optlaseng.2015.05.003 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect 

  27. J Mater Process Technol Pang 217 131 2015 10.1016/j.jmatprotec.2014.11.013 Self-consistent modelling of keyhole and weld pool dynamics in tandem dual beam laser welding of aluminum alloy 

  28. J Laser Appl Pang 27 022007 2015 10.2351/1.4913455 Explanation of penetration depth variation during laser welding under variable ambient pressure 

  29. Opt Laser Technol Pang 77 203 2016 10.1016/j.optlastec.2015.09.024 Efficient multiple time scale method for modeling compressible vapor plume dynamics inside transient keyhole during fiber laser welding 

  30. Opt Lasers Eng Pang 82 28 2016 10.1016/j.optlaseng.2016.01.019 Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: local evaporation, plume swing and gas entrapment into porosity 

  31. J Phys D: Appl Phys Rai 39 1257 2006 10.1088/0022-3727/39/6/037 Tailoring weld geometry during keyhole mode laser welding using a genetic algorithm and a heat transfer model 

  32. J Phys D: Appl Phys Zhou 39 5338 2006 10.1088/0022-3727/39/24/036 Investigation of transport phenomena and defect formation in pulsed laser keyhole welding of zinc-coated steels 

  33. Oscher 2002 Level set methods and dynamic implicit surfaces 

  34. Int J Heat Mass Transf Liu 91 990 2015 10.1016/j.ijheatmasstransfer.2015.08.046 Numerical investigation of weld pool behaviors and ripple formation for a moving GTA welding under pulsed currents 

  35. Opt Express Zhang 21 19997 2013 10.1364/OE.21.019997 Direct observation of keyhole characteristics in deep penetration laser welding with a 10kW fiber laser 

  36. Sci Technol Weld Join Kawahito 13 744 2008 10.1179/136217108X329313 Characterisation of plasma induced during high power fibre laser welding of stainless steel 

  37. J Mater Process Technol Bachmann 214 578 2014 10.1016/j.jmatprotec.2013.11.013 Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로