$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

3-D Displacement Measurement for Structural Health Monitoring Using Low-Frequency Magnetic Fields 원문보기

IEEE sensors journal, v.17 no.4, 2017년, pp.1165 - 1174  

Kypris, Orfeas ,  Markham, Andrew

Abstract AI-Helper 아이콘AI-Helper

Smart structures of the future will require a cost-effective, easily deployable solution for structural health monitoring. High loads on structures cause stresses that may lead to expansion of gaps, which are of utmost importance when it comes to overall structural health, as they absorb excess stre...

참고문헌 (63)

  1. 10.1109/RFID.2009.4911195 

  2. 2016 

  3. 10.1109/ICSENS.2007.4388398 

  4. Proc 41st Eur Microw Conf (EuMC) Passive chipless wireless sensor for two-dimensional displacement measurement mandel 2011 79 

  5. 10.1109/APS.2013.6711811 

  6. Fericean, Sorin, Droxler, Reinhard. New Noncontacting Inductive Analog Proximity and Inductive Linear Displacement Sensors for Industrial Automation. IEEE sensors journal, vol.7, no.11, 1538-1545.

  7. Balluff GmbH 2016 

  8. Lion Precision 2016 

  9. 2016 

  10. Micro-Epsilon 2016 

  11. Introduction to Biomedical Equipment Technology carr 1993 

  12. Bellan, D., Gaggelli, A., Maradei, F., Mariscotti, A., Pignari, S.A.. Time-domain measurement and spectral analysis of nonstationary low-frequency magnetic-field emissions on board of rolling stock. IEEE transactions on electromagnetic compatibility, vol.46, no.1, 12-23.

  13. Hill, R.J.. Electric railway traction. VI. Electromagnetic compatibility disturbance-sources and equipment susceptibility. Power engineering journal, vol.11, no.1, 31-39.

  14. Railway track dospial 2015 

  15. Chang, Luh-Maan, Lee, Yao-Jong. Evaluation of Performance of Bridge Deck Expansion Joints. Journal of performance of constructed facilities, vol.16, no.1, 3-9.

  16. Arumugam, Darmindra D., Griffin, Joshua D., Stancil, Daniel D., Ricketts, David S.. Three-dimensional position and orientation measurements using magneto-quasistatic fields and complex image theory [measurements corner]. IEEE antennas and propagation magazine, vol.56, no.1, 160-173.

  17. Concrete pavement guide part 3: Preservation strategies chapter 360—Joint and crack sealing 2015 

  18. Lynch, J. P., Loh, K. J.. A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. The Shock and vibration digest : a publication of the Shock and Vibration Information Center, Naval Research Laboratory, vol.38, no.2, 91-128.

  19. Chang, Peter C., Flatau, Alison, Liu, S. C.. Review Paper: Health Monitoring of Civil Infrastructure. Structural health monitoring, vol.2, no.3, 257-267.

  20. Rodrigues, Carlos, Félix, Carlos, Figueiras, Joaquim. Fiber-optic-based displacement transducer to measure bridge deflections. Structural health monitoring, vol.10, no.2, 147-156.

  21. RoboSMART 2016 

  22. Metje, N., Chapman, D.N., Rogers, C.D.F., Henderson, P., Beth, M.. An Optical Fiber Sensor System for Remote Displacement Monitoring of Structures - Prototype Tests in the Laboratory. Structural health monitoring, vol.7, no.1, 51-63.

  23. Markham, A., Trigoni, N., Macdonald, D. W., Ellwood, S. A.. Underground Localization in 3-D Using Magneto-Inductive Tracking. IEEE sensors journal, vol.12, no.6, 1809-1816.

  24. Journal of the Structural Devision Algorithms for nonlinear structural dynamics adeli 1978 104 263 

  25. Day, Judd S, Murdoch, Duncan J, Dumas, Genevieve A. Calibration of position and angular data from a magnetic tracking device. Journal of biomechanics, vol.33, no.8, 1039-1045.

  26. Plotkin, Anton, Shafrir, Oren, Paperno, Eugene, Kaplan, Daniel M.. Magnetic Eye Tracking: A New Approach Employing a Planar Transmitter. IEEE transactions on bio-medical engineering, vol.57, no.5, 1209-1215.

  27. 10.1109/ICC.2015.7248747 

  28. Sheinker, Arie, Ginzburg, Boris, Salomonski, Nizan, Frumkis, Lev, Kaplan, Ben-Zion. Localization in 3-D Using Beacons of Low Frequency Magnetic Field. IEEE transactions on instrumentation and measurement, vol.62, no.12, 3194-3201.

  29. Shieh, J, Huber, J.E, Fleck, N.A, Ashby, M.F. The selection of sensors. Progress in materials science, vol.46, no.3, 461-504.

  30. MATLAB® Version 8 5 0 197613 (R2015a) 2015 

  31. 2016 

  32. 2016 

  33. PREMO Group 2016 

  34. Misakian, Martin. Equations for the Magnetic Field Produced by One or More Rectangular Loops of Wire in the Same Plane. Journal of research of the National Institute of Standards and Technology, vol.105, no.4, 557-564.

  35. Abrudan, Traian E., Zhuoling Xiao, Markham, Andrew, Trigoni, Niki. Distortion Rejecting Magneto-Inductive Three-Dimensional Localization (MagLoc). IEEE journal on selected areas in communications : a publication of the IEEE Communications Society, vol.33, no.11, 2404-2417.

  36. The Feynman Lectures on Physics feynman 1964 2 

  37. Park, Jong-Woong, Sim, Sung-Han, Jung, Hyung-Jo, Spencer Jr., Billie F.. Development of a Wireless Displacement Measurement System Using Acceleration Responses. Sensors, vol.13, no.7, 8377-8392.

  38. Sekiya, Hidehiko, Kimura, Kentaro, Miki, Chitoshi. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers. Sensors, vol.16, no.2, 257-.

  39. 10.1109/ICSENS.2015.7370199 

  40. Zhao, Xuefeng, Liu, Hao, Yu, Yan, Xu, Xiaodong, Hu, Weitong, Li, Mingchu, Ou, Jingping. Bridge Displacement Monitoring Method Based on Laser Projection-Sensing Technology. Sensors, vol.15, no.4, 8444-8463.

  41. Lee, Jong Jae, Shinozuka, Masanobu. A vision-based system for remote sensing of bridge displacement. NDT & E international : independent nondestructive testing and evaluation, vol.39, no.5, 425-431.

  42. Lecompte, D., Vantomme, J., Sol, H.. Crack Detection in a Concrete Beam using Two Different Camera Techniques. Structural health monitoring, vol.5, no.1, 59-68.

  43. Yin, Zhaozheng, Wu, Chenglin, Chen, Genda. Concrete crack detection through full-field displacement and curvature measurements by visual mark tracking: A proof-of-concept study. Structural health monitoring, vol.13, no.2, 205-218.

  44. Park, H. S., Lee, H. M., Adeli, Hojjat, Lee, I.. A New Approach for Health Monitoring of Structures: Terrestrial Laser Scanning. Computer-aided civil and infrastructure engineering, vol.22, no.1, 19-30.

  45. Park, S.W., Park, H.S., Kim, J.H., Adeli, Hojjat. 3D displacement measurement model for health monitoring of structures using a motion capture system. Measurement : journal of the International Measurement Confederation, vol.59, 352-362.

  46. Jo, Hongki, Sim, Sung‐Han, Tatkowski, Andrzej, Spencer Jr., B. F., Nelson, Mark E.. Feasibility of displacement monitoring using low‐cost GPS receivers. Structural control and health monitoring, vol.20, no.9, 1240-1254.

  47. 10.1117/12.274654 

  48. Kaewunruen, Sakdirat, Remennikov, Alex M.. Progressive failure of prestressed concrete sleepers under multiple high-intensity impact loads. Engineering structures, vol.31, no.10, 2460-2473.

  49. 10.1115/JRC2012-74149 

  50. Philips Adewuyi, A., Wu, Zhishen, Kammrujaman Serker, N.H.M.. Assessment of Vibration-based Damage Identification Methods Using Displacement and Distributed Strain Measurements. Structural health monitoring, vol.8, no.6, 443-461.

  51. Kaewunruen, Sakdirat, Remennikov, Alex M.. Dynamic Crack Propagations in Prestressed Concrete Sleepers in Railway Track Systems Subjected to Severe Impact Loads. Journal of structural engineering, vol.136, no.6, 749-754.

  52. Moorty, Shashi, Roeder, Charles W.. Temperature‐Dependent Bridge Movements. Journal of structural engineering, vol.118, no.4, 1090-1105.

  53. Ni, Y. Q., Hua, X. G., Wong, K. Y., Ko, J. M.. Assessment of Bridge Expansion Joints Using Long-Term Displacement and Temperature Measurement. Journal of performance of constructed facilities, vol.21, no.2, 143-151.

  54. 10.1145/2370216.2370281 

  55. Park, Ki-Tae, Kim, Sang-Hyo, Park, Heung-Suk, Lee, Kyu-Wan. The determination of bridge displacement using measured acceleration. Engineering structures, vol.27, no.3, 371-378.

  56. 10.1145/2185677.2185746 

  57. Quaternions and Rotation Sequences A Primer with Applications to Orbits Aerospace and Virtual Reality kuipers 1999 

  58. 10.1109/ICPR.2006.962 

  59. 10.1145/1869983.1870011 

  60. Raab, Frederick, H., Blood, Ernest, B., Steiner, Terry, O., Jones, Herbert, R.. Magnetic Position and Orientation Tracking System. IEEE transactions on aerospace and electronic systems, vol.aes15, no.5, 709-718.

  61. Abrudan, Traian E., Zhuoling Xiao, Markham, Andrew, Trigoni, Niki. Underground Incrementally Deployed Magneto-Inductive 3-D Positioning Network. IEEE transactions on geoscience and remote sensing : a publication of the IEEE Geoscience and Remote Sensing Society, vol.54, no.8, 4376-4391.

  62. Principles of Inductive Near Field Communications for Internet of Things agbinya 2011 

  63. Kypris, Orfeas, Abrudan, Traian E., Markham, Andrew. Magnetic Induction-Based Positioning in Distorted Environments. IEEE transactions on geoscience and remote sensing : a publication of the IEEE Geoscience and Remote Sensing Society, vol.54, no.8, 4605-4612.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로