$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Induced liquid-solid contact via micro/nano multiscale texture on a surface and its effect on the Leidenfrost temperature

Experimental thermal and fluid science : ETF science, v.84, 2017년, pp.156 - 164  

Lee, Gi Cheol (Department of Mechanical Engineering, POSTECH, Pohang 790-784, Republic of Korea) ,  Kang, Jun-young (Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Republic of Korea) ,  Park, Hyun Sun (Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Republic of Korea) ,  Moriyama, Kiyofumi (Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Republic of Korea) ,  Kim, Seol Ha (Institute of Engineering Thermophysics, Chinese Academy of Science, Beijing 100190, China) ,  Kim, Moo Hwan (Department of Mechanical Engineering, POSTECH, Pohang 790-784, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

A significant increase in the Leidenfrost temperature (LFT) was observed on a micro/nano rnultiscale textured surface (MTS) compared with a polished surface (PS) and a micro rough surface (MRS). MTS was fabricated by anodic oxidation and has nano-scaled needles with micro roughness. It showed improv...

Keyword

참고문헌 (38)

  1. Am. J. Phys. Curzon 46 825 1978 10.1119/1.11197 The Leidenfrost phenomenon 

  2. Tamura vol. 7 509 1958 Evaporation and combustion of a drop contacting with a hot surface 

  3. J. Heat Transf. Baumeister 95 166 1973 10.1115/1.3450019 Leidenfrost temperature-its correlation for liquid metals, cryogens, hydrocarbons, and water 

  4. Int. J. Heat Mass Transf. Gani 20 855 1977 10.1016/0017-9310(77)90115-6 Dispersed flow heat transfer 

  5. Int. J. Heat Mass Transf. Bernardin 40 73 1996 10.1016/S0017-9310(96)00067-1 Effects of surface roughness on water droplet impact history and heat transfer regimes 

  6. Int. J. Heat Mass Transf. Avedisian 30 379 1987 10.1016/0017-9310(87)90126-8 Leidenfrost boiling of methanol droplets on hot porous/ceramic surfaces 

  7. Energy Takata 30 209 2005 10.1016/j.energy.2004.05.004 Effect of surface wettability on boiling and evaporation 

  8. Int. J. Air-Conditioning Refrig. Kim 21 1350028 2013 10.1142/S2010132513500284 Study of Leidenfrost mechanism in droplet impacting on hydrophilic and hydrophobic surfaces 

  9. Exp. Therm. Fluid Sci. Nagai 12 373 1996 10.1016/0894-1777(95)00129-8 Leidenfrost temperature on an extremely smooth surface 

  10. J. Therm. Sci. Technol. Kim 7 453 2012 10.1299/jtst.7.453 Effects of micro/nano-scale surface characteristics on the Leidenfrost point temperature of water 

  11. Appl. Phys. Lett. Kim 98 083121 2011 10.1063/1.3560060 On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena 

  12. J. Heat Transf. Berenson 83 351 1961 10.1115/1.3682280 Film-boiling heat transfer from a horizontal surface 

  13. R.E. Henry, A correlation for the minimum film boiling temperature, in: AIChE Symp., Ser. 70., vol. 138, 1974, pp. 81-90. 

  14. Adv. Cryogenic Eng. Keshock 271-282 1995 Heat transfer coefficient measurements of liquid nitrogen drops undergoing film boiling 

  15. ARS J. Hosler 32 553 1962 10.2514/8.6067 Film boiling on a horizontal plate 

  16. Int. J. Heat Mass Transf. Spiegler 6 987 1963 10.1016/0017-9310(63)90053-X Onset of stable film boiling and the foam limit 

  17. Int. J. Multiphase Flow Kim 35 427 2009 10.1016/j.ijmultiphaseflow.2009.02.004 On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles 

  18. Int. J. Heat Mass Transf. Kim 53 1542 2010 10.1016/j.ijheatmasstransfer.2009.11.029 Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids 

  19. Langmuir Kruse 29 9798 2013 10.1021/la401936w Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces 

  20. Nat. Commun. Solomon 4 2013 Non-wetting droplets on hot superhydrophilic surfaces 

  21. Appl. Phys. Lett. Kwon 103 201601 2013 10.1063/1.4828673 Increasing Leidenfrost point using micro-nano multiscale surface structures 

  22. Appl. Phys. Lett. Kim 102 233901 2013 10.1063/1.4809944 Dynamics of water droplet on a heated nanotubes surface 

  23. Nucl. Eng. Des. Ahn 240 3350 2010 10.1016/j.nucengdes.2010.07.006 Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface 

  24. Int. J. Heat Mass Transf. Kandlikar 45 3771 2002 10.1016/S0017-9310(02)00090-X Contact angles and interface behavior during rapid evaporation of liquid on a heated surface 

  25. Phys. Rev. Lett. Nikolayev 97 184503 2006 10.1103/PhysRevLett.97.184503 Experimental evidence of the vapor recoil mechanism in the boiling crisis 

  26. Int. J. Heat Mass Transf. Wang 51 6317 2008 10.1016/j.ijheatmasstransfer.2008.06.011 An analytical solution for the total heat transfer in the thin-film region of an evaporating meniscus 

  27. Int. J. Heat Mass Transf. Kim 50 4105 2007 10.1016/j.ijheatmasstransfer.2007.02.002 Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux 

  28. J. Heat Transf. Kim 132 061501 2010 10.1115/1.4000746 On the mechanism of pool boiling critical heat flux enhancement in nanofluids 

  29. Langmuir Kang 27 14910 2011 10.1021/la2031413 Equilibrium contact angles of liquid droplets on ideal rough solids 

  30. Nucl. Eng. Des. Kim 278 367 2014 10.1016/j.nucengdes.2014.06.042 Experimental study of water droplets on over-heated nano/microstructured zirconium surfaces 

  31. Proc. Roy. Soc. Lond. Rayleigh 29 196 1879 On the capillary phenomena of jets 

  32. Bull. Jpn. Soc. Mech. Eng. Enomoto 22 724 1979 10.1299/jsme1958.22.724 Heat transfer characteristics and dynamic behavior of saturated droplets impinging on a heated vertical surface 

  33. Trans. Kor. Soc. Mech. Eng. B Park 39 567 2015 10.3795/KSME-B.2015.39.7.567 The effect of impact velocity on droplet-wall collision heat transfer above the Leidenfrost point temperature 

  34. ISIJ Int. Hatta 35 50 1995 10.2355/isijinternational.35.50 Collision dynamics of a water droplet impinging on a rigid surface above the Leidenfrost temperature 

  35. Phys. Fluids Frohn 12 785 2000 10.1063/1.870335 Experimental investigation of interaction processes between droplets and hot walls 

  36. J. Fluid Mech. Biance 554 47 2006 10.1017/S0022112006009189 On the elasticity of an inertial liquid shock 

  37. Soft Matter Tran 9 3272 2013 10.1039/c3sm27643k Droplet impact on superheated micro-structured surfaces 

  38. Appl. Phys. Lett. Ahn 98 071908 2011 10.1063/1.3555430 Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling 

LOADING...

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로