$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Fabrication of PEDOT coated PVA-GO nanofiber for supercapacitor 원문보기

Materials chemistry and physics, v.192, 2017년, pp.161 - 169  

Mohd Abdah, Muhammad Amirul Aizat (Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia) ,  Zubair, Nur Afifah (Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia) ,  Azman, Nur Hawa Nabilah (Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia) ,  Sulaiman, Yusran (Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia)

Abstract AI-Helper 아이콘AI-Helper

Abstract Conducting nanofibers comprised of poly(vinyl alcohol) (PVA)-graphene oxide (GO) nanofiber coated with poly(3,4-ethylenedioxythiophene) (PEDOT) for supercapacitor application was prepared through integrated techniques i.e. electrospinning and electrodeposition. The formation of smooth cros...

주제어

참고문헌 (50)

  1. Int. J. Electrochem. Sci. Chen 9 4072 2014 10.1016/S1452-3981(23)08076-8 Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review 

  2. Chem. Soc. Rev. Zhang 38 2520 2009 10.1039/b813846j Carbon-based materials as supercapacitor electrodes 

  3. Renew. Sustain. Energy Rev. Hadjipaschalis 13 1513 2009 10.1016/j.rser.2008.09.028 Overview of current and future energy storage technologies for electric power applications 

  4. J. Electr. Syst. Kuldeep Sahay 5 8 2009 Supercapacitors energy storage system for power quality improvement: an overview 

  5. Mater. Des. Patil 87 939 2015 10.1016/j.matdes.2015.08.084 Fabrication and performance evaluation of rare earth lanthanum sulfide film for supercapacitor application: effect of air annealing 

  6. J. Power Sources Lee 301 348 2016 10.1016/j.jpowsour.2015.09.113 Improved performance of cylindrical hybrid supercapacitor using activated carbon/niobium doped hydrogen titanate 

  7. Appl. Phys. A Cottineau 82 599 2006 10.1007/s00339-005-3401-3 Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors 

  8. J. Power Sources Snook 196 1 2011 10.1016/j.jpowsour.2010.06.084 Conducting-polymer-based supercapacitor devices and electrodes 

  9. Electrochim. Acta Rudge 39 273 1994 10.1016/0013-4686(94)80063-4 A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors 

  10. Solid State Ion. Mastragostino 148 493 2002 10.1016/S0167-2738(02)00093-0 Conducting polymers as electrode materials in supercapacitors 

  11. J. Power Sources Gómez 196 4102 2011 10.1016/j.jpowsour.2010.11.002 Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors 

  12. J. Power Sources Tong 297 195 2015 10.1016/j.jpowsour.2015.06.128 Vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors 

  13. Nat. Mater. Junwei Liu 13 178 2014 10.1038/nmat3828 Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator 

  14. Carbon Pei 50 3210 2012 10.1016/j.carbon.2011.11.010 The reduction of graphene oxide 

  15. Acta Biomater. Balint 10 2341 2014 10.1016/j.actbio.2014.02.015 Conductive polymers: towards a smart biomaterial for tissue engineering 

  16. New J. Chem. Feng 40 2304 2016 10.1039/C5NJ02054A Electrosynthesis and electrochemical capacitive behavior of a new nitrogen PEDOT analogue-based polymer electrode 

  17. Int. J. Eng. Technol. IJET-IJENS Ahmad Zamri 11 15 2011 Improved electrical conductivity of polyvinyl alcohol/multiwalled carbon nanotube nanofibre composite films with MnO2 as filler synthesised using the electrospinning process 

  18. Mater. Lett. Koski 58 493 2004 10.1016/S0167-577X(03)00532-9 Effect of molecular weight on fibrous PVA produced by electrospinning 

  19. Chem. Mater. Yao 15 1860 2003 10.1021/cm0210795 Electrospinning and stabilization of fully hydrolyzed poly(vinyl alcohol) fibers 

  20. Appl. Polym. Sci. Hwa Hong 96 983 2005 10.1002/app.21002 Preparation of conducting nylon-6 electrospun fiber webs by the in situ polymerization of polyaniline 

  21. Colloids Surfaces A Physicochem. Eng. Aspects Wang 457 318 2014 10.1016/j.colsurfa.2014.06.006 Fabrication of PVA/graphene oxide/TiO2 composite nanofibers through electrospinning and interface sol-gel reaction: effect of graphene oxide on PVA nanofibers and growth of TiO2 

  22. Mater. Sci. Semicond. Process. Rose 31 281 2015 10.1016/j.mssp.2014.10.051 Investigation of cyclic voltammetry of graphene oxide/polyaniline/polyvinylidene fluoride nanofibers prepared via electrospinning 

  23. J. Appl. Polym. Sci. Qi 127 1885 2013 10.1002/app.37924 Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds 

  24. Solid State Ion. Thangappan 268 Part B 321 2014 10.1016/j.ssi.2014.10.025 Synthesis of graphene oxide/vanadium pentoxide composite nanofibers by electrospinning for supercapacitor applications 

  25. Opt. Laser Technol. Khalifa 54 335 2013 10.1016/j.optlastec.2013.06.013 Uncommon photoluminescence behavior of Fe3+ doped polyvinyl alcohol films 

  26. Mater. Des. Liu 85 483 2015 10.1016/j.matdes.2015.07.021 Effect of carbonization temperature on properties of aligned electrospun polyacrylonitrile carbon nanofibers 

  27. Electrochim. Acta Lee 200 174 2016 10.1016/j.electacta.2016.03.095 Hierarchical porous MnO2/carbon nanofiber composites with hollow cores for high-performance supercapacitor electrodes: effect of poly(methyl methacrylate) concentration 

  28. Mater. Lett. Lei 154 173 2015 10.1016/j.matlet.2015.04.095 Flexible polyaniline-decorated carbon fiber nanocomposite mats as supercapacitors 

  29. Compos. Sci. Technol. Wang 67 2981 2007 10.1016/j.compscitech.2007.05.015 Capacitance properties of single wall carbon nanotube/polypyrrole composite films 

  30. RSC Adv. Zhou 6 62062 2016 10.1039/C6RA07297F Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers 

  31. J. Power Sources Jiang 307 190 2016 10.1016/j.jpowsour.2015.12.081 Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors 

  32. J. Mater. Chem. A Liu 3 13461 2015 10.1039/C5TA01105A A wire-shaped flexible asymmetric supercapacitor based on carbon fiber coated with a metal oxide and a polymer 

  33. Electrochim. Acta Yang 211 524 2016 10.1016/j.electacta.2016.06.012 Fabrication of ultrafine manganese oxide-decorated carbon nanofibers for high-performance electrochemical capacitors 

  34. J. Energy Storage Wang 7 99 2016 10.1016/j.est.2016.05.011 Simple and fast synthesis of polyaniline nanofibers/carbon paper composites as supercapacitor electrodes 

  35. Electrochim. Acta Ujjain 169 276 2015 10.1016/j.electacta.2015.03.141 Co3O4/Reduced graphene oxide nanoribbon for high performance asymmetric supercapacitor 

  36. Electrochim. Acta Zhou 192 448 2016 10.1016/j.electacta.2016.02.015 One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors 

  37. J. Alloys Compd. Li 653 212 2015 10.1016/j.jallcom.2015.08.275 Supercapacitors with ultrahigh energy density based on mesoporous carbon nanofibers: enhanced double-layer electrochemical properties 

  38. Electrochim. Acta Azman 188 785 2016 10.1016/j.electacta.2015.12.019 Effect of electropolymerization potential on the preparation of PEDOT/graphene oxide hybrid material for supercapacitor application 

  39. Halper 41 2006 Supercapacitors: a Brief Overview 

  40. J. Power Sources Kim 274 512 2015 10.1016/j.jpowsour.2014.10.126 Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes 

  41. Int. J. Energy Res. Ng 39 344 2015 10.1002/er.3247 Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor 

  42. ACS Appl. Mater. Interfaces Li 5 2685 2013 10.1021/am4001634 Fabrication of high surface area graphene/polyaniline nanocomposites and their application in supercapacitors 

  43. RSC Adv. Si 1 1271 2011 10.1039/c1ra00519g An electrochemically formed three-dimensional structure of polypyrrole/graphene nanoplatelets for high-performance supercapacitors 

  44. J. Taibah Univ. Sci. Ebrahim 10 281 2016 10.1016/j.jtusci.2015.07.004 Preparation and characterization of a pseudocapacitor electrode by spraying a conducting polymer onto a flexible substrate 

  45. J. Appl. Polym. Sci. Qi 127 1885 2013 10.1002/app.37924 Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds 

  46. J. Electroanal. Chem. Interfacial Electrochem. Brug 176 275 1984 10.1016/S0022-0728(84)80324-1 The analysis of electrode impedances complicated by the presence of a constant phase element 

  47. Int. J. Hydrogen Energy Liew 40 852 2015 10.1016/j.ijhydene.2014.09.160 Characterization of ionic liquid added poly(vinyl alcohol)-based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors 

  48. Prog. Org. Coatings Ates 71 1 2011 10.1016/j.porgcoat.2010.12.011 Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces 

  49. J. Mater. Chem. A Liu 2 2555 2014 10.1039/C3TA14445C Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes 

  50. Electrochim. Acta Wang 75 213 2012 10.1016/j.electacta.2012.04.088 Synthesis and electrochemical performance of MnO2/CNTs-embedded carbon nanofibers nanocomposites for supercapacitors 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로