$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Non-piezoelectric effects in piezoresponse force microscopy

Current applied physics : the official journal of the Korean Physical Society, v.17 no.5, 2017년, pp.661 - 674  

Seol, Daehee (Corresponding author.) ,  Kim, Bora ,  Kim, Yunseok

Abstract AI-Helper 아이콘AI-Helper

Piezoresponse force microscopy (PFM) has been used extensively for exploring nanoscale ferro/piezo-electric phenomena over the past two decades. The imaging mechanism of PFM is based on the detection of the electromechanical (EM) response induced by the inverse piezoelectric effect through the canti...

주제어

참고문헌 (128)

  1. Nat. Mater Kalinin 14 973 2015 10.1038/nmat4395 Big-deep-smart data in imaging for guiding materials design 

  2. Nature Barth 437 671 2005 10.1038/nature04166 Engineering atomic and molecular nanostructures at surfaces 

  3. Appl. Phys. A-Mater Yamanaka 66 S313 1998 10.1007/s003390051153 Quantitative elasticity evaluation by contact resonance in an atomic force microscope 

  4. J. Appl. Phys. Yuya 104 074916 2008 10.1063/1.2996259 Contact-resonance atomic force microscopy for viscoelasticity 

  5. Macromolecules Hurley 46 9396 2013 10.1021/ma401988h Measurement of viscoelastic loss tangent with contact resonance modes of atomic force microscopy 

  6. Adv. Mater Palermo 18 145 2006 10.1002/adma.200501394 Electronic characterization of organic thin films by Kelvin probe force microscopy 

  7. Accounts. Chem. Res. Liscio 43 541 2010 10.1021/ar900247p Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and kelvin probe force microscopy: unraveling electronic processes in complex materials 

  8. Nano Lett. Ko 11 1428 2011 10.1021/nl103372a High-resolution field effect sensing of ferroelectric charges 

  9. Appl. Phys. Lett. Kitamura 72 3154 1998 10.1063/1.121577 High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope 

  10. Nanoscale Strelcov 8 13838 2016 10.1039/C6NR01524G Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach 

  11. Physiol. Meas. Edwards 27 R63 2006 10.1088/0967-3334/27/12/R01 Scanning electrochemical microscopy: principles and applications to biophysical systems 

  12. J. Phys. Chem. B Shao 102 9915 1998 10.1021/jp9828282 Probing ion transfer at the liquid/liquid interface by scanning electrochemical microscopy (SECM) 

  13. J. Appl. Phys. Rugar 68 1169 1990 10.1063/1.346713 Magnetic force microscopy: general principles and application to longitudinal recording media 

  14. Sci. Rep. Park 6 20794 2016 10.1038/srep20794 Probing of multiple magnetic responses in magnetic inductors using atomic force microscopy 

  15. Appl. Phys. Lett. Li 94 163118 2009 10.1063/1.3126521 Bimodal magnetic force microscopy: separation of short and long range forces 

  16. Nature Rugar 430 329 2004 10.1038/nature02658 Single spin detection by magnetic resonance force microscopy 

  17. Appl. Phys. Lett. Shi 77 4295 2000 10.1063/1.1334658 Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes 

  18. J. Vac. Sci. Technol. B Rabe 15 1506 1997 10.1116/1.589484 Nanomechanical surface characterization by atomic force acoustic microscopy 

  19. Appl. Phys. Lett. Odagawa 80 2159 2002 10.1063/1.1463707 Measuring ferroelectric polarization component parallel to the surface by scanning nonlinear dielectric microscopy 

  20. J. Chem. Phys. Hecht 112 7761 2000 10.1063/1.481382 Scanning near-field optical microscopy with aperture probes: fundamentals and applications 

  21. J. Am. Ceram. Soc. Balke 92 1629 2009 10.1111/j.1551-2916.2009.03240.x Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future 

  22. J. Materiom. Li 1 3 2015 10.1016/j.jmat.2015.03.001 Strain-based scanning probe microscopies for functional materials, biological structures, and electrochemical systems 

  23. IEEE T. Ultrason. Ferr. Peter 53 2253 2006 10.1109/TUFFC.2006.170 Sample-tip interaction of piezoresponse force microscopy in ferroelectric nanostructures 

  24. J. Phys. D. Appl. Phys. Soergel 44 464003 2011 10.1088/0022-3727/44/46/464003 Piezoresponse force microscopy (PFM) 

  25. J. Am. Ceram. Soc. Kalinin 88 1077 2005 10.1111/j.1551-2916.2005.00383.x Local phenomena in oxides by advanced scanning probe microscopy 

  26. Nanotechnology Park 25 355703 2014 10.1088/0957-4484/25/35/355703 Humidity effect of domain wall roughening behavior in ferroelectric copolymer thin films 

  27. J. Appl. Phys. Gysel 103 084120 2008 10.1063/1.2907990 Restricted domain growth and polarization reversal kinetics in ferroelectric polymer thin films 

  28. Phys. Status Solidi R Choi 4 94 2010 10.1002/pssr.201004009 Nanoscale piezoresponse of 70 nm poly(vinylidene fluoride-trifluoro-ethylene) films annealed at different temperatures 

  29. Phys. Rev. Lett. Liu 108 078103 2012 10.1103/PhysRevLett.108.078103 Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy 

  30. Nano Lett. Halperin 4 1253 2004 10.1021/nl049453i Piezoelectric effect in human bones studied in nanometer scale 

  31. ACS Nano Kholkin 4 610 2010 10.1021/nn901327v Strong piezoelectricity in bioinspired peptide nanotubes 

  32. J. Mater. Chem. A Seol 3 20352 2015 10.1039/C5TA06190C Screening effect on photovoltaic performance in ferroelectric CH3NH3PbI3 perovskite thin films 

  33. J. Phys. Chem. Lett. Kim 6 1729 2015 10.1021/acs.jpclett.5b00695 Ferroelectric polarization in CH3NH3PbI3 perovskite 

  34. J. Phys. Chem. Lett. Kutes 5 3335 2014 10.1021/jz501697b Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films 

  35. J. Phys. Chem. Lett. Coll 6 1408 2015 10.1021/acs.jpclett.5b00502 Polarization switching and light-enhanced piezoelectricity in lead halide perovskites 

  36. Nano Energy Kim 22 483 2016 10.1016/j.nanoen.2016.02.046 Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators 

  37. Nat. Commun. Rodrigues 6 7572 2015 10.1038/ncomms8572 Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates 

  38. Nat. Commun. Zelisko 5 4284 2014 10.1038/ncomms5284 Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets 

  39. Appl. Phys. Lett. Peter 87 082901 2005 10.1063/1.2010603 Analysis of shape effects on the piezoresponse in ferroelectric nanograins with and without adsorbates 

  40. Appl. Phys. Lett. Yang 108 252902 2016 10.1063/1.4954276 Decoupling indirect topographic cross-talk in band excitation piezoresponse force microscopy imaging and spectroscopy 

  41. J. Microsc. Oxford Jungk 227 72 2007 10.1111/j.1365-2818.2007.01783.x Consequences of the background in piezoresponse force microscopy on the imaging of ferroelectric domain structures 

  42. Appl. Phys. Lett. Jungk 91 253511 2007 10.1063/1.2827566 Challenges for the determination of piezoelectric constants with piezoresponse force microscopy 

  43. Appl. Phys. Lett. Wang 104 072905 2014 10.1063/1.4866264 Background-free piezoresponse force microscopy for quantitative measurements 

  44. Science Scott 315 954 2007 10.1126/science.1129564 Applications of modern ferroelectrics 

  45. Rev. Mod. Phys. Dawber 77 1083 2005 10.1103/RevModPhys.77.1083 Physics of thin-film ferroelectric oxides 

  46. Phys. Rev. B Kalinin 65 125408 2002 10.1103/PhysRevB.65.125408 Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces 

  47. Appl. Phys. A-Mater Abplanalp 66 S231 1998 10.1007/s003390051136 Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy 

  48. Appl. Phys. Lett. Johann 97 102902 2010 10.1063/1.3486226 Lateral signals in piezoresponse force microscopy at domain boundaries of ferroelectric crystals 

  49. Appl. Phys. A-Mater Harnagea 70 261 2000 10.1007/s003390050045 Quantitative ferroelectric characterization of single submicron grains in Bi-layered perovskite thin films 

  50. Appl. Phys. Lett. Kim 96 032904 2010 10.1063/1.3292587 Nanoscale properties of thin twin walls and surface layers in piezoelectric WO3-x 

  51. J. Appl. Phys. Lei 120 124106 2016 10.1063/1.4963750 Quantitative lateral and vertical piezoresponse force microscopy on a PbTiO3 single crystal 

  52. J. Electroceram. Kholkin 19 83 2007 10.1007/s10832-007-9045-2 Nanoscale characterization of polycrystalline ferroelectric materials for piezoelectric applications 

  53. Nano Lett. Kim 10 1266 2010 10.1021/nl9038339 Non-kolmogorov-avrami-ishibashi switching dynamics in nanoscale ferroelectric capacitors 

  54. Adv. Funct. Mater Kim 23 3971 2013 10.1002/adfm.201300079 Universality of polarization switching dynamics in ferroelectric capacitors revealed by 5D piezoresponse force microscopy 

  55. Sci. Rep. Hu 4 4772 2014 10.1038/srep04772 Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films 

  56. Phys. Rev. B Lee 84 094112 2011 10.1103/PhysRevB.84.094112 Polarization switching and relaxation dynamics of bismuth layered ferroelectric thin films: role of oxygen defect sites and crystallinity 

  57. Rev. Sci. Instrum. Dehoff 76 023708 2005 10.1063/1.1850652 Atomic force microscopy-based experimental setup for studying domain switching dynamics in ferroelectric capacitors 

  58. Appl. Phys. Lett. Ganpule 77 3275 2000 10.1063/1.1322051 Domain nucleation and relaxation kinetics in ferroelectric thin films 

  59. Appl. Phys. Lett. Yang 92 252901 2008 10.1063/1.2949078 Domain wall motion in epitaxial Pb(Zr,Ti)O3 capacitors investigated by modified piezoresponse force microscopy 

  60. Nat. Nanotechnol. McGilly 10 145 2015 10.1038/nnano.2014.320 Controlling domain wall motion in ferroelectric thin films 

  61. Nanoscale Seol 7 11561 2015 10.1039/C5NR03161C Strong anisotropy of ferroelectricity in lead-free bismuth silicate 

  62. Microsc. Microanal. Kalinin 12 206 2006 10.1017/S1431927606060156 Vector piezoresponse force microscopy 

  63. Appl. Phys. Lett. Park 97 112907 2010 10.1063/1.3487933 Three-dimensional ferroelectric domain imaging of epitaxial BiFeO3 thin films using angle-resolved piezoresponse force microscopy 

  64. Appl. Phys. A-Mater Rodriguez 80 99 2005 10.1007/s00339-004-2925-2 Investigation of the mechanism of polarization switching in ferroelectric capacitors by three- dimensional piezoresponse force microscopy 

  65. Appl. Phys. Lett. Eng 74 233 1999 10.1063/1.123266 Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics 

  66. Nanotechnology Rodriguez 18 475504 2007 10.1088/0957-4484/18/47/475504 Dual-frequency resonance-tracking atomic force microscopy 

  67. Microsc. Microanal. Romanyuk 21 154 2015 10.1017/S1431927614013622 Single- and multi-frequency detection of surface displacements via scanning probe microscopy 

  68. J. Phys. D. Appl. Phys. Jesse 44 464006 2011 10.1088/0022-3727/44/46/464006 Band excitation in scanning probe microscopy: sines of change 

  69. Nanotechnology Jesse 18 435503 2007 10.1088/0957-4484/18/43/435503 The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale 

  70. Appl. Phys. Lett. Jesse 88 062908 2006 10.1063/1.2172216 Switching spectroscopy piezoresponse force microscopy of ferroelectric materials 

  71. Adv. Mater Rodriguez 20 109 2008 10.1002/adma.200700473 Spatially resolved mapping of polarization switching behavior in nanoscale ferroelectrics 

  72. Curr. Appl. Phys. Yang 11 1111 2011 10.1016/j.cap.2011.05.017 Nanoscale studies of defect-mediated polarization switching dynamics in ferroelectric thin film capacitors 

  73. Nanotechnology Jesse 17 1615 2006 10.1088/0957-4484/17/6/014 Dynamic behaviour in piezoresponse force microscopy 

  74. J. Electroceram. Huey 13 287 2004 10.1007/s10832-004-5114-y The importance of distributed loading and cantilever angle in piezo-force microscopy 

  75. Phys. Rev. B Johann 81 094109 2010 10.1103/PhysRevB.81.094109 Impact of electrostatic forces in contact-mode scanning force microscopy 

  76. J. Phys. Condens. Mat. Kantorovich 12 795 2000 10.1088/0953-8984/12/6/304 Electrostatic energy calculation for the interpretation of scanning probe microscopy experiments 

  77. Phys. Rev. B Hong 58 5078 1998 10.1103/PhysRevB.58.5078 Surface charge density and evolution of domain structure in triglycine sulfate determined by electrostatic-force microscopy 

  78. Rev. Sci. Instrum. Hong 70 1735 1999 10.1063/1.1149660 Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope 

  79. J. Appl. Phys. Balke 118 072013 2015 10.1063/1.4927811 Current and surface charge modified hysteresis loops in ferroelectric thin films 

  80. Appl. Phys. Lett. Hong 80 1453 2002 10.1063/1.1454219 Effect of cantilever-sample interaction on piezoelectric force microscopy 

  81. J. Appl. Phys. Hong 89 1377 2001 10.1063/1.1331654 Principle of ferroelectric domain imaging using atomic force microscope 

  82. Nanotechnology Balke 27 425707 2016 10.1088/0957-4484/27/42/425707 Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy 

  83. ACS Nano Balke 8 10229 2014 10.1021/nn505176a Exploring local electrostatic effects with scanning probe microscopy: implications for piezoresponse force microscopy and triboelectricity 

  84. Appl. Phys. Lett. Kim 109 102901 2016 10.1063/1.4962387 Ferroelectric-like hysteresis loop originated from non-ferroelectric effects 

  85. Appl. Phys. Lett. Kim 94 032907 2009 10.1063/1.3046786 Origin of surface potential change during ferroelectric switching in epitaxial PbTiO3 thin films studied by scanning force microscopy 

  86. Phys. Rev. Kalinin B 65 125408 2002 10.1103/PhysRevB.65.125408 Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces 

  87. Appl. Phys. Lett. Christman 73 3851 1998 10.1063/1.122914 Piezoelectric measurements with atomic force microscopy 

  88. Appl. Phys. Lett. Kim 91 132903 2007 10.1063/1.2790485 Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors 

  89. Nanotechnology Arruda 23 325402 2012 10.1088/0957-4484/23/32/325402 The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries 

  90. MRS Bull. Jesse 37 651 2012 10.1557/mrs.2012.144 Electrochemical strain microscopy: probing ionic and electrochemical phenomena in solids at the nanometer level 

  91. J. Am. Ceram. Soc. Adler 84 2117 2001 10.1111/j.1151-2916.2001.tb00968.x Chemical expansivity of electrochemical ceramics 

  92. J. Appl. Phys. Morozovska 108 053712 2010 10.1063/1.3460637 Local probing of ionic diffusion by electrochemical strain microscopy: spatial resolution and signal formation mechanisms 

  93. Nanoscale Kumar 5 11964 2013 10.1039/c3nr03953f Frequency spectroscopy of irreversible electrochemical nucleation kinetics on the nanoscale 

  94. J. Appl. Phys. Seol 118 072014 2015 10.1063/1.4927813 Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions 

  95. ACS Nano Kim 6 7026 2012 10.1021/nn3020757 Ionically-Mediated electromechanical hysteresis in transition metal oxides 

  96. ACS Nano Balke 9 6484 2015 10.1021/acsnano.5b02227 Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy 

  97. Appl. Phys. Lett. Chen 104 242907 2014 10.1063/1.4884422 Mechanisms of electromechanical coupling in strain based scanning probe microscopy 

  98. J. Appl. Phys. Proksch 116 066804 2014 10.1063/1.4891349 Electrochemical strain microscopy of silica glasses 

  99. Appl. Phys. Lett. Sekhon 104 162908 2014 10.1063/1.4873386 Voltage induced local hysteretic phase switching in silicon 

  100. Nature Haeni 430 758 2004 10.1038/nature02773 Room-temperature ferroelectricity in strained SrTiO3 

  101. Appl. Phys. Lett. Kim 97 242907 2010 10.1063/1.3525963 Defect-related room-temperature ferroelectricity in tensile-strained SrTiO3 thin films on GdScO3 (110) substrates 

  102. Phys. Rev. B Pertsev 61 R825 2000 10.1103/PhysRevB.61.R825 Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films 

  103. Nat. Chem. Kumar 3 707 2011 10.1038/nchem.1112 Measuring oxygen reduction/evolution reactions on the nanoscale 

  104. Nat. Nanotechnol. Balke 5 749 2010 10.1038/nnano.2010.174 Nanoscale mapping of ion diffusion in a lithium-ion battery cathode 

  105. Mater Today Kalinin 14 548 2011 10.1016/S1369-7021(11)70280-2 Li-ion dynamics and reactivity on the nanoscale 

  106. J. Electrochem. Soc. Guo 158 A982 2011 10.1149/1.3604759 Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution 

  107. J. Appl. Phys. Luchkin 118 072016 2015 10.1063/1.4927816 Li transport in fresh and aged LiMn2O4 cathodes via electrochemical strain microscopy 

  108. Phys. Rev. B Maranganti 80 054109 2009 10.1103/PhysRevB.80.054109 Atomistic determination of flexoelectric properties of crystalline dielectrics 

  109. Philos. T. R. Soc. A Lee 370 4944 2012 10.1098/rsta.2012.0200 Giant flexoelectric effect through interfacial strain relaxation 

  110. J. Phys. Chem. B Newnham 101 10141 1997 10.1021/jp971522c Electrostriction: nonlinear electromechanical coupling in solid dielectrics 

  111. Appl. Phys. Lett. Eliseev 104 232901 2014 10.1063/1.4882861 Electrostrictive and electrostatic responses in contact mode voltage modulated scanning probe microscopies 

  112. Sci. Rep. Seol 6 30579 2016 10.1038/srep30579 Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy 

  113. Nanotechnology Yudin 24 432001 2013 10.1088/0957-4484/24/43/432001 Fundamentals of flexoelectricity in solids 

  114. Nat. Nanotechnol. Kalinin 10 917 2015 10.1038/nnano.2015.213 Multiferroics: focusing light on flexoelectricity 

  115. Phys. B Zhou 407 3377 2012 10.1016/j.physb.2012.04.041 Flexoelectricity induced increase of critical thickness in epitaxial ferroelectric thin films 

  116. Phys. B Zhou 407 3377 2012 10.1016/j.physb.2012.04.041 Flexoelectricity induced increase of critical thickness in epitaxial ferroelectric thin films 

  117. Nat. Nanotechnol. Chu 10 972 2015 10.1038/nnano.2015.191 Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients 

  118. ACS Nano Kim 5 9104 2011 10.1021/nn203342v Nonlinear phenomena in multiferroic nanocapacitors: Joule heating and electromechanical effects 

  119. P. Natl. Acad. Sci. U. S. A. Bintachitt 107 7219 2010 10.1073/pnas.0913172107 Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics 

  120. Phys. Rev. Lett. Griggio 108 157604 2012 10.1103/PhysRevLett.108.157604 Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films 

  121. Sci. Rep. Vasudevan 3 2677 2013 10.1038/srep02677 Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution 

  122. Mayergoyz 2005 The Science of Hysteresis 

  123. Science Lee 296 2006 2002 10.1126/science.1069958 Ferroelectric Bi3.25La0.75Ti3O12 films of uniform a-axis orientation on silicon substrates 

  124. Jpn. J. Appl. Phys. Yun 43 L647 2004 10.1143/JJAP.43.L647 Giant ferroelectric polarization beyond 150 μC/cm2 in BiFeO3 thin film 

  125. J. Am. Ceram. Soc. Denev 94 2699 2011 10.1111/j.1551-2916.2011.04740.x Probing ferroelectrics using optical second harmonic generation 

  126. Opt. Express Trull 15 15868 2007 10.1364/OE.15.015868 Second-harmonic parametric scattering in ferroelectric crystals with disordered nonlinear domain structures 

  127. Nat. Nanotechnol. Becher 10 661 2015 10.1038/nnano.2015.108 Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films 

  128. Appl. Phys. Lett. Strelcov 101 192902 2012 10.1063/1.4764939 Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로