$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Efficient small molecular organic light emitting diode with graphene cathode covered by a Sm layer with nano-hollows and n-doped by Bphen:Cs2CO3 in the hollows

Nanotechnology, v.28 no.10, 2017년, pp.105201 -   

Yao, Li (State Key Laboratory for Microscopic Physics, School of Physics, Peking University, Beijing 100871, People’s Republic of China) ,  Li, Lei (State Key Laboratory for Microscopic Physics, School of Physics, Peking University, Beijing 100871, People’s Republic of China) ,  Qin, Laixiang (State Key Laboratory for Microscopic Physics, School of Physics, Peking University, Beijing 100871, People’s Republic of China) ,  Ma, Yaoguang (State Key Laboratory for Microscopic Physics, School of Physics, Peking University, Beijing 100871, People’s Republic of China) ,  Wang, Wei (State Key Laboratory for Microscopic Physics, School of Physics, Peking University, Beijing 100871, People’s Republic of China) ,  Meng, Hu (State Key Laboratory for Microscopic Physics, School of Physics, Peking University, Beijing 100871, People’s Republic of China) ,  Jin, Weifeng (State Key Laboratory for Microscopic Physics, School of Physics, Peking University, Beijing 100871, People’s Republic of China) ,  Wang, Yilun (State Key Laboratory for Microscopic Physics, School of Physics, Peking University,) ,  Xu, Wanjin ,  Ran, Guangzhao ,  You, Liping ,  Qin, Guogang

Abstract AI-Helper 아이콘AI-Helper

Graphene is a favorable candidate for electrodes of organic light emitting diodes (OLEDs). Graphene has quite a high work function of ∼4.5 eV, and has been extensively studied when used as anodes of OLEDs. In order to use graphene as a cathode, the electron injection barrier between the graphe...

참고문헌 (35)

  1. [1] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Graphene photonics and optoelectronics Nat. Photon. 4 611–22 10.1038/nphoton.2010.186 Graphene photonics and optoelectronics Bonaccorso F, Sun Z, Hasan T and Ferrari A C Nat. Photon. 4 2010 611 622 

  2. [2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 The electronic properties of graphene Rev. Mod. Phys. 81 109–62 10.1103/RevModPhys.81.109 The electronic properties of graphene Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K Rev. Mod. Phys. 0034-6861 81 2009 109 162 

  3. [3] Geim A K 2009 Graphene: status and prospects Science 324 1530–4 10.1126/science.1158877 Graphene: status and prospects Geim A K Science 324 2009 1530 1534 

  4. [4] Geim A K and Novoselov K S 2007 The rise of graphene Nat. Mater. 6 183–91 10.1038/nmat1849 The rise of graphene Geim A K and Novoselov K S Nat. Mater. 6 2007 183 191 

  5. [5] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Large-scale pattern growth of graphene films for stretchable transparent electrodes Nature 457 706–10 10.1038/nature07719 Large-scale pattern growth of graphene films for stretchable transparent electrodes Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H Nature 457 2009 706 710 

  6. [6] Lee C, Wei X D, Kysar J W and Hone J 2008 Measurement of the elastic properties and intrinsic strength of monolayer graphene Science 321 385–8 10.1126/science.1157996 Measurement of the elastic properties and intrinsic strength of monolayer graphene Lee C, Wei X D, Kysar J W and Hone J Science 321 2008 385 388 

  7. [7] Huang J H, Fang J H, Liu C C and Chu C W 2011 Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics ACS Nano 5 6262–71 10.1021/nn201253w Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics Huang J H, Fang J H, Liu C C and Chu C W ACS Nano 5 2011 6262 6271 

  8. [8] Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Ultrafast graphene photodetector Nat. Nanotechnol. 4 839–43 10.1038/nnano.2009.292 Ultrafast graphene photodetector Xia F, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P Nat. Nanotechnol. 4 2009 839 843 

  9. [9] Wang Y, Tong S W, Xu X F, Ozyilmaz B and Loh K P 2011 Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells Adv. Mater. 23 1514–8 10.1002/adma.201003673 Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells Wang Y, Tong S W, Xu X F, Ozyilmaz B and Loh K P Adv. Mater. 23 2011 1514 1518 

  10. [10] Han T-H, Lee Y, Choi M-R, Woo S-H, Bae S-H, Hong B H, Ahn J-H and Lee T-W 2012 Extremely efficient flexible organic light-emitting diodes with modified graphene anode Nat. Photon. 6 105–10 10.1038/nphoton.2011.318 Extremely efficient flexible organic light-emitting diodes with modified graphene anode Han T-H, Lee Y, Choi M-R, Woo S-H, Bae S-H, Hong B H, Ahn J-H and Lee T-W Nat. Photon. 6 2012 105 110 

  11. [11] Lee S K, Jang H Y, Jang S, Choi E, Hong B H, Lee J, Park S and Ahn J H 2012 All graphene-based thin film transistors on flexible plastic substrates Nano Lett. 12 3472–6 10.1021/nl300948c All graphene-based thin film transistors on flexible plastic substrates Lee S K, Jang H Y, Jang S, Choi E, Hong B H, Lee J, Park S and Ahn J H Nano Lett. 12 2012 3472 3476 

  12. [12] Rana K, Singh J and Ahn J-H 2014 A graphene-based transparent electrode for use in flexible optoelectronic devices J. Mater. Chem. C 2 2646 10.1039/c3tc32264e A graphene-based transparent electrode for use in flexible optoelectronic devices Rana K, Singh J and Ahn J-H J. Mater. Chem. 2 C 2014 2646 

  13. [13] Hu Z, Zhong Z, Chen Y, Sun C, Huang F, Peng J, Wang J and Cao Y 2016 Energy-level alignment at the organic/electrode interface in organic optoelectronic devices Adv. Funct. Mater. 26 129–36 10.1002/adfm.201503420 Energy-level alignment at the organic/electrode interface in organic optoelectronic devices Hu Z, Zhong Z, Chen Y, Sun C, Huang F, Peng J, Wang J and Cao Y Adv. Funct. Mater. 26 2016 129 136 

  14. [14] Meng H, Dai Y, Ye Y, Luo J X, Shi Z J, Dai L and Qin G G 2012 Bilayer graphene anode for small molecular organic electroluminescence J. Phys. D: Appl. Phys. 45 245103 10.1088/0022-3727/45/24/245103 Bilayer graphene anode for small molecular organic electroluminescence Meng H, Dai Y, Ye Y, Luo J X, Shi Z J, Dai L and Qin G G J. Phys. D: Appl. Phys. 0022-3727 45 24 245103 2012 

  15. [15] Li N, Oida S, Tulevski G S, Han S J, Hannon J B, Sadana D K and Chen T C 2013 Efficient and bright organic light-emitting diodes on single-layer graphene electrodes Nat. Commun. 4 2294 10.1038/ncomms3294 Efficient and bright organic light-emitting diodes on single-layer graphene electrodes Li N, Oida S, Tulevski G S, Han S J, Hannon J B, Sadana D K and Chen T C Nat. Commun. 4 2013 2294 

  16. [16] Kim D, Lee D, Lee Y and Jeon D Y 2013 Work-function engineering of graphene anode by bis(trifluoromethanesulfonyl)amide doping for efficient polymer light-emitting diodes Adv. Funct. Mater. 23 5049–55 10.1002/adfm201301386 Work-function engineering of graphene anode by bis(trifluoromethanesulfonyl)amide doping for efficient polymer light-emitting diodes Kim D, Lee D, Lee Y and Jeon D Y Adv. Funct. Mater. 23 2013 5049 5055 

  17. [17] Sun T, Wang Z L, Shi Z J, Ran G Z, Xu W J, Wang Z Y, Li Y Z, Dai L and Qin G G 2010 Multilayered graphene used as anode of organic light emitting devices Appl. Phys. Lett. 96 133301 10.1063/1.3373855 Multilayered graphene used as anode of organic light emitting devices Sun T, Wang Z L, Shi Z J, Ran G Z, Xu W J, Wang Z Y, Li Y Z, Dai L and Qin G G Appl. Phys. Lett. 96 133301 2010 

  18. [18] Meyer J, Kidambi P R, Bayer B C, Weijtens C, Kuhn A, Centeno A, Pesquera A, Zurutuza A, Robertson J and Hofmann S 2014 Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes Sci. Rep. 4 5380 10.1038/srep05380 Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes Meyer J, Kidambi P R, Bayer B C, Weijtens C, Kuhn A, Centeno A, Pesquera A, Zurutuza A, Robertson J and Hofmann S Sci. Rep. 4 2014 5380 

  19. [19] Wu J 2010 Organic light-emitting diodes on solution-processed graphene transparent electrodes ACS Nano 4 43–8 10.1021/nn900728d Organic light-emitting diodes on solution-processed graphene transparent electrodes Wu J ACS Nano 4 2010 43 48 

  20. [20] Jo G et al 2010 Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes Nanotechnology 21 175201 10.1088/0957-4484/21/17/175201 Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes Jo G et al Nanotechnology 0957-4484 21 17 175201 2010 

  21. [21] Hwang J O, Park J S, Choi D S, Kim J Y, Lee S H, Lee K E, Kim Y H, Song M H, Yoo S and Kim S O 2012 Workfunction-tunable, n-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes ACS Nano 6 159–67 10.1021/nn203176u Workfunction-tunable, n-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes Hwang J O, Park J S, Choi D S, Kim J Y, Lee S H, Lee K E, Kim Y H, Song M H, Yoo S and Kim S O ACS Nano 6 2012 159 167 

  22. [22] Seo J T, Han J, Lim T, Lee K H, Hwang J, Yang H and Ju S 2014 Fully transparent quantum dot light-emitting diode integrated with graphene anode and cathode ACS Nano 8 12476–82 10.1021/nn505316q Fully transparent quantum dot light-emitting diode integrated with graphene anode and cathode Seo J T, Han J, Lim T, Lee K H, Hwang J, Yang H and Ju S ACS Nano 8 2014 12476 12482 

  23. [23] Sanders S et al 2015 Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics Nanoscale 7 13135–42 10.1039/C5NR03246F Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics Sanders S et al Nanoscale 7 2015 13135 13142 

  24. [24] Matyba P, Yamaguchi H, Eda G, Chhowalla M, Edman L and Robinson N D 2010 Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices ACS Nano 4 637–42 10.1021/nn9018569 Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices Matyba P, Yamaguchi H, Eda G, Chhowalla M, Edman L and Robinson N D ACS Nano 4 2010 637 642 

  25. [25] Chang J H, Lin W H, Wang P C, Taur J I, Ku T A, Chen W T, Yan S J and Wu C I 2015 Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode Sci. Rep. 5 9693 10.1038/srep09693 Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode Chang J H, Lin W H, Wang P C, Taur J I, Ku T A, Chen W T, Yan S J and Wu C I Sci. Rep. 5 2015 9693 

  26. [26] Chu T-Y, Chen S-Y, Chen J-F and Chen C H 2006 Ultrathin electron injection layer on indium–tin oxide bottom cathode for highly efficient inverted organic light-emitting diodes Japan. J. Appl. Phys. 45 4948–50 10.1143/JJAP.45.4948 Ultrathin electron injection layer on indium–tin oxide bottom cathode for highly efficient inverted organic light-emitting diodes Chu T-Y, Chen S-Y, Chen J-F and Chen C H Japan. J. Appl. Phys. 0021-4922 45 2006 4948 4950 

  27. [27] Choi H W, Kim S Y, Kim W-K and Lee J-L 2005 Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer Appl. Phys. Lett. 87 082102 10.1063/1.2033129 Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer Choi H W, Kim S Y, Kim W-K and Lee J-L Appl. Phys. Lett. 87 082102 2005 

  28. [28] Qin G G, Xu A G, Ma G L, Ran G Z, Qiao Y P, Zhang B R, Chen W X and Wu S K 2004 A top-emission organic light-emitting diode with a silicon anode and an Sm/Au cathode Appl. Phys. Lett. 85 5406 10.1063/1.1823601 A top-emission organic light-emitting diode with a silicon anode and an Sm/Au cathode Qin G G, Xu A G, Ma G L, Ran G Z, Qiao Y P, Zhang B R, Chen W X and Wu S K Appl. Phys. Lett. 85 2004 5406 

  29. [29] Luo Z, Pinto N J, Davila Y and Charlie Johnson A T 2012 Controlled doping of graphene using ultraviolet irradiation Appl. Phys. Lett. 100 253108 10.1063/1.4729828 Controlled doping of graphene using ultraviolet irradiation Luo Z, Pinto N J, Davila Y and Charlie Johnson A T Appl. Phys. Lett. 100 253108 2012 

  30. [30] Lin Y-J and Zeng J-J 2013 Tuning the work function of graphene by ultraviolet irradiation Appl. Phys. Lett. 102 183120 10.1063/1.4804289 Tuning the work function of graphene by ultraviolet irradiation Lin Y-J and Zeng J-J Appl. Phys. Lett. 102 183120 2013 

  31. [31] Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J and Dai H 2009 N-doping of graphene through electrothermal reactions with ammonia Science 324 768–71 10.1126/science.1170335 N-doping of graphene through electrothermal reactions with ammonia Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J and Dai H Science 324 2009 768 771 

  32. [32] Sato Y, Takai K and Enoki T 2011 Electrically controlled adsorption of oxygen in bilayer graphene devices Nano Lett. 11 3468–75 10.1021/nl202002p Electrically controlled adsorption of oxygen in bilayer graphene devices Sato Y, Takai K and Enoki T Nano Lett. 11 2011 3468 3475 

  33. [33] Ferrari A C et al 2006 Raman spectrum of graphene and graphene layers Phys. Rev. Lett. 97 187401 10.1103/PhysRevLett.97.187401 Raman spectrum of graphene and graphene layers Ferrari A C et al Phys. Rev. Lett. 97 187401 2006 

  34. [34] Tongay S, Berke K, Lemaitre M, Nasrollahi Z, Tanner D B, Hebard A F and Appleton B R 2011 Stable hole doping of graphene for low electrical resistance and high optical transparency Nanotechnology 22 6 10.1088/0957-4484/22/42/425701 Stable hole doping of graphene for low electrical resistance and high optical transparency Tongay S, Berke K, Lemaitre M, Nasrollahi Z, Tanner D B, Hebard A F and Appleton B R Nanotechnology 0957-4484 22 42 425701 2011 6 

  35. [35] Kwon K C, Choi K S, Kim B J, Lee J-L and Kim S Y 2012 Work-function decrease of graphene sheet using alkali metal carbonates J. Phys. Chem. C 116 26586–91 10.1021/jp3069927 Work-function decrease of graphene sheet using alkali metal carbonates Kwon K C, Choi K S, Kim B J, Lee J-L and Kim S Y J. Phys. Chem. 1932-7447 116 C 2012 26586 26591 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로