$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Sulfur and Nitrogen Dual-Doped Molybdenum Phosphide Nanocrystallites as an Active and Stable Hydrogen Evolution Reaction Electrocatalyst in Acidic and Alkaline Media

ACS catalysis, v.7 no.4, 2017년, pp.3030 - 3038  

Anjum, Mohsin Ali Raza ,  Lee, Jae Sung

Abstract AI-Helper 아이콘AI-Helper

Sulfur and nitrogen dual-doped molybdenum phosphides (MoP/SN) are synthesized via a (thio)ureaphosphate-assisted strategy in which the reductant (thio)urea acts as S and N source and phosphoric acid provides the P atom. The MoP/SN nanoparticles are generated by in situ phosphidation of indigenously ...

주제어

참고문헌 (42)

  1. Zou, Xiaoxin, Zhang, Yu. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society reviews, vol.44, no.15, 5148-5180.

  2. Zhong, Yu, Xia, Xinhui, Shi, Fan, Zhan, Jiye, Tu, Jiangping, Fan, Hong Jin. Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Advanced science, vol.3, no.5, 1500286-.

  3. Faber, Matthew S., Jin, Song. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy & environmental science, vol.7, no.11, 3519-3542.

  4. Wang, Jiahai, Cui, Wei, Liu, Qian, Xing, Zhicai, Asiri, Abdullah M., Sun, Xuping. Recent Progress in Cobalt‐Based Heterogeneous Catalysts for Electrochemical Water Splitting. Advanced materials, vol.28, no.2, 215-230.

  5. Cui, Wei, Cheng, Ningyan, Liu, Qian, Ge, Chenjiao, Asiri, Abdullah M., Sun, Xuping. Mo2C Nanoparticles Decorated Graphitic Carbon Sheets: Biopolymer-Derived Solid-State Synthesis and Application as an Efficient Electrocatalyst for Hydrogen Generation. ACS catalysis, vol.4, no.8, 2658-2661.

  6. Xiao, Peng, Sk, Mahasin Alam, Thia, Larissa, Ge, Xiaoming, Lim, Rern Jern, Wang, Jing-Yuan, Lim, Kok Hwa, Wang, Xin. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy & environmental science, vol.7, no.8, 2624-2629.

  7. Tian, Jingqi, Liu, Qian, Asiri, Abdullah M., Sun, Xuping. Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0–14. Journal of the American Chemical Society, vol.136, no.21, 7587-7590.

  8. Kibsgaard, Jakob, Jaramillo, Thomas F.. Molybdenum Phosphosulfide: An Active, Acid‐Stable, Earth‐Abundant Catalyst for the Hydrogen Evolution Reaction. Angewandte Chemie. international edition, vol.53, no.52, 14433-14437.

  9. Chen, Zhongzhong, Lv, Cuncai, Chen, Zhibo, Jin, Lihuang, Wang, Jie, Huang, Zhipeng. Molybdenum Phosphide Flakes Catalyze Hydrogen Generation in Acidic and Basic Solutions. American journal of analytical chemistry, vol.5, no.17, 1200-1213.

  10. Zhu, Wenxin, Tang, Chun, Liu, Danni, Wang, Jianlong, Asiri, Abdullah M., Sun, Xuping. A self-standing nanoporous MoP2 nanosheet array: an advanced pH-universal catalytic electrode for the hydrogen evolution reaction. Journal of materials chemistry. A, Materials for energy and sustainability, vol.4, no.19, 7169-7173.

  11. Jiang, Ping, Liu, Qian, Liang, Yanhui, Tian, Jingqi, Asiri, Abdullah M., Sun, Xuping. A Cost‐Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity: FeP Nanowire Array as the Active Phase. Angewandte Chemie. international edition, vol.53, no.47, 12855-12859.

  12. Liu, P., Rodriguez, J. A.. Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface: The Importance of Ensemble Effect. Journal of the American Chemical Society, vol.127, no.42, 14871-14878.

  13. Pan, Yuan, Liu, Yanru, Zhao, Jinchong, Yang, Kang, Liang, Jilei, Liu, Dandan, Hu, Wenhui, Liu, Dapeng, Liu, Yunqi, Liu, Chenguang. Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.4, 1656-1665.

  14. Callejas, Juan F., Read, Carlos G., Popczun, Eric J., McEnaney, Joshua M., Schaak, Raymond E.. Nanostructured Co2P Electrocatalyst for the Hydrogen Evolution Reaction and Direct Comparison with Morphologically Equivalent CoP. Chemistry of materials : a publication of the American Chemical Society, vol.27, no.10, 3769-3774.

  15. Blanchard, Peter E. R., Grosvenor, Andrew P., Cavell, Ronald G., Mar, Arthur. X-ray Photoelectron and Absorption Spectroscopy of Metal-Rich Phosphides M2P and M3P (M = Cr−Ni). Chemistry of materials : a publication of the American Chemical Society, vol.20, no.22, 7081-7088.

  16. Carenco, Sophie, Portehault, David, Boissière, Cédric, Mézailles, Nicolas, Sanchez, Clément. Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives. Chemical reviews, vol.113, no.10, 7981-8065.

  17. Shi, Yanmei, Zhang, Bin. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society reviews, vol.45, no.6, 1529-1541.

  18. Ye, Ruquan, del Angel‐Vicente, Paz, Liu, Yuanyue, Arellano‐Jimenez, M. Josefina, Peng, Zhiwei, Wang, Tuo, Li, Yilun, Yakobson, Boris I., Wei, Su‐Huai, Yacaman, Miguel Jose, Tour, James M.. High‐Performance Hydrogen Evolution from MoS2(1–x)Px Solid Solution. Advanced materials, vol.28, no.7, 1427-1432.

  19. Jyothirmayee Aravind, S.S., Ramanujachary, Kandalam, Mugweru, Amos, Vaden, Timothy D.. Molybdenum phosphide-graphite nanomaterials for efficient electrocatalytic hydrogen production. Applied catalysis. A, General, vol.490, 101-107.

  20. Han, Sheng, Feng, Yunlong, Zhang, Fan, Yang, Chongqing, Yao, Zhaoquan, Zhao, Wuxue, Qiu, Feng, Yang, Lingyun, Yao, Yefeng, Zhuang, Xiaodong, Feng, Xinliang. Metal‐Phosphide‐Containing Porous Carbons Derived from an Ionic‐Polymer Framework and Applied as Highly Efficient Electrochemical Catalysts for Water Splitting. Advanced functional materials, vol.25, no.25, 3899-3906.

  21. Wang, Dezhi, Zhang, Dezun, Tang, Chaoyun, Zhou, Pan, Wu, Zhuangzhi, Fang, Baizeng. Hydrogen evolution catalyzed by cobalt-promoted molybdenum phosphide nanoparticles. Catalysis science & technology, vol.6, no.6, 1952-1956.

  22. Liang, X., Zhang, D., Wu, Z., Wang, D.. The Fe-promoted MoP catalyst with high activity for water splitting. Applied catalysis. A, General, vol.524, 134-138.

  23. Wang, Xu-Dong, Xu, Yang-Fan, Rao, Hua-Shang, Xu, Wei-Jian, Chen, Hong-Yan, Zhang, Wei-Xiong, Kuang, Dai-Bin, Su, Cheng-Yong. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy & environmental science, vol.9, no.4, 1468-1475.

  24. Wang, D., Zhang, X., Zhang, D., Shen, Y., Wu, Z.. Influence of Mo/P Ratio on CoMoP nanoparticles as highly efficient HER catalysts. Applied catalysis. A, General, vol.511, 11-15.

  25. McEnaney, Joshua M., Crompton, J. Chance, Callejas, Juan F., Popczun, Eric J., Biacchi, Adam J., Lewis, Nathan S., Schaak, Raymond E.. Amorphous Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution. Chemistry of materials : a publication of the American Chemical Society, vol.26, no.16, 4826-4831.

  26. Xing, Zhicai, Liu, Qian, Asiri, Abdullah M., Sun, Xuping. Closely Interconnected Network of Molybdenum Phosphide Nanoparticles: A Highly Efficient Electrocatalyst for Generating Hydrogen from Water. Advanced materials, vol.26, no.32, 5702-5707.

  27. Zhou, Ding, Han, Bao‐Hang. Graphene‐Based Nanoporous Materials Assembled by Mediation of Polyoxometalate Nanoparticles. Advanced functional materials, vol.20, no.16, 2717-2722.

  28. Chen, Yu-Yun, Zhang, Yun, Jiang, Wen-Jie, Zhang, Xing, Dai, Zhihui, Wan, Li-Jun, Hu, Jin-Song. Pomegranate-like N,P-Doped Mo2C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution. ACS nano, vol.10, no.9, 8851-8860.

  29. Shyla, B., Mahadevaiah, Nagendrappa, G.. A simple spectrophotometric method for the determination of phosphate in soil, detergents, water, bone and food samples through the formation of phosphomolybdate complex followed by its reduction with thiourea. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, vol.78, no.1, 497-502.

  30. Advanced Inorganic Chemistry Cotton F. A. 1999 6 

  31. McCullough, John F., Sheridan, Richard C., Frederick, Leland L.. Pyrolysis of urea phosphate. Journal of agricultural and food chemistry, vol.26, no.3, 670-675.

  32. Wang, Tanyuan, Du, Kuangzhou, Liu, Wanglian, Zhu, Zhiwei, Shao, Yuanhua, Li, Meixian. Enhanced electrocatalytic activity of MoP microparticles for hydrogen evolution by grinding and electrochemical activation. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.8, 4368-4373.

  33. Cannon, P.. The solubility of molybdenum trioxide in various mineral acids. Journal of inorganic and nuclear chemistry, vol.11, no.2, 124-127.

  34. Pelavin, M., Hendrickson, D. N., Hollander, J. M., Jolly, W. L.. Phosphorus 2p electron binding energies. Correlation with extended Hueckel charges. The Journal of physical chemistry, vol.74, no.5, 1116-1121.

  35. Jiang, Hongliang, Zhu, Yihua, Su, Yunhe, Yao, Yifan, Liu, Yanyan, Yang, Xiaoling, Li, Chunzhong. Highly dual-doped multilayer nanoporous graphene: efficient metal-free electrocatalysts for the hydrogen evolution reaction. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.24, 12642-12645.

  36. Franke, R., Chasse, T., Streubel, P., Meisel, A.. Auger parameters and relaxation energies of phosphorus in solid compounds. Journal of electron spectroscopy and related phenomena, vol.56, no.4, 381-388.

  37. Dong, Haifeng, Liu, Conghui, Ye, Haitao, Hu, Linping, Fugetsu, Bunshi, Dai, Wenhao, Cao, Yu, Qi, Xueqiang, Lu, Huiting, Zhang, Xueji. Three-dimensional Nitrogen-Doped Graphene Supported Molybdenum Disulfide Nanoparticles as an Advanced Catalyst for Hydrogen Evolution Reaction. Scientific reports, vol.5, 17542-.

  38. Ito, Yoshikazu, Cong, Weitao, Fujita, Takeshi, Tang, Zheng, Chen, Mingwei. High Catalytic Activity of Nitrogen and Sulfur Co‐Doped Nanoporous Graphene in the Hydrogen Evolution Reaction. Angewandte Chemie. international edition, vol.54, no.7, 2131-2136.

  39. Sanjinés, R., Wiemer, C., Almeida, J., Lévy, F.. Valence band photoemission study of the TiMoN system. Thin solid films, vol.290, 334-338.

  40. Patterson, Thomas A., Carver, James C., Leyden, Donald E., Hercules, David M.. A surface study of cobalt-molybdena-alumina catalysts using x-ray photoelectron spectroscopy. The Journal of physical chemistry, vol.80, no.15, 1700-1708.

  41. Duan, Jingjing, Chen, Sheng, Jaroniec, Mietek, Qiao, Shi Zhang. Porous C3N4 Nanolayers@N-Graphene Films as Catalyst Electrodes for Highly Efficient Hydrogen Evolution. ACS nano, vol.9, no.1, 931-940.

  42. Chen, Chien-Fan, Mukherjee, Partha P.. Probing the morphological influence on solid electrolyte interphase and impedance response in intercalation electrodes. Physical chemistry chemical physics : PCCP, vol.17, no.15, 9812-9827.

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로