$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

An Analytic Approach for Optimal Geometrical Design of GaAs Nanowires for Maximal Light Harvesting in Photovoltaic Cells 원문보기

Scientific reports, v.7, 2017년, pp.46504 -   

Wu, Dan (OPTIMUS, Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, Nanyang Tech-nological University , 50 Nanyang Avenue, 639798, Singapore) ,  Tang, Xiaohong (OPTIMUS, Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, Nanyang Tech-nological University , 50 Nanyang Avenue, 639798, Singapore) ,  Wang, Kai (Department of Electrical & Electronic Engineering, South University of Science and Technology of China , 1088 Xueyuan Avenue, Shenzhen, 518055, China) ,  Li, Xianqiang (OPTIMUS, Centre for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering, Nanyang Tech-nological University , 50 Nanyang Avenue, 639798, Singapore)

Abstract AI-Helper 아이콘AI-Helper

Semiconductor nanowires(NWs) with subwavelength scale diameters have demonstrated superior light trapping features, which unravel a new pathway for low cost and high efficiency future generation solar cells. Unlike other published work, a fully analytic design is for the first time proposed for opti...

참고문헌 (34)

  1. Abujetas D. R. , Paniagua-Dominguez R. & Sanchez-Gil J. A. Unraveling the Janus Role of Mie Resonances and Leaky/Guided Modes in Semiconductor Nanowire Absorption for Enhanced Light Harvesting . ACS Photonics . 2 , 921 – 929 ( 2015 ). 

  2. Kelzenberg M. D. . Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications . Nat. Mater. 9 , 239 – 244 ( 2010 ). 20154692 

  3. Cao L. . Engineering light absorption in semiconductor nanowire devices . Nat. Mater. 8 , 643 – 647 ( 2009 ). 19578337 

  4. Paniagua-Dominguez R. , Grzela G. , Rivas J. G. & Sanchez-Gil J. A. Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes . Nanoscale. 5 , 10582 – 10590 ( 2013 ). 24057037 

  5. Zoubi O. H. A. L. , Said T. M. , Alher M. A. , Ghazaly S. E. L. & Naseem H. Broadband high efficiency silicon nanowire arrays with radial diversity within diamond-like geometrical distribution for photovoltaic applications . Opt. Express. 23 , A767 – A778 ( 2015 ). 26367679 

  6. Cao L. . Semiconductor Nanowire Optical Antenna Solar Absorbers . Nano Letters. 10 , 439 – 445 ( 2010 ). 20078065 

  7. Kayes B. M. , Atwater H. A. & Lewis N. S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells . J. Appl. Phys. 97 , 114302 ( 2005 ). 

  8. del Alamo J. A. Nanometre-scale electronics with III-V compound semiconductors . Nature. 479 , 317 – 323 ( 2011 ). 22094691 

  9. Law M. , Greene L. E. , Johnson J. C. , Saykally R. & Yang P. Nanowire dye-sensitized solar cells . Nat. Mater. 4 , 455 – 459 ( 2005 ). 15895100 

  10. Soci C. , Bao X.-Y. , Aplin D. P. R. & Wang D. A Systematic Study on the Growth of GaAs Nanowires by Metal−Organic Chemical Vapor Deposition . Nano Letters. 8 , 4275 – 4282 ( 2008 ). 19367965 

  11. Munshi A. M. . Position-Controlled Uniform GaAs Nanowires on Silicon using Nanoimprint Lithography . Nano Letters. 14 , 960 – 966 ( 2014 ). 24467394 

  12. Björk M. T. . One-dimensional heterostructures in semiconductor nanowhiskers . Appl. Phys. Lett. 80 , 1058 – 1060 ( 2002 ). 

  13. Gudiksen M. S. , Lauhon L. J. , Wang J. , Smith D. C. & Lieber C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics . Nature. 415 , 617 – 620 ( 2002 ). 11832939 

  14. Wu Y. , Fan R. & Yang P. Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires . Nano Letters. 2 , 83 – 86 ( 2002 ). 

  15. Dhaka V. . High quality GaAs nanowires grown on glass substrates . Nano Letters. 12 , 1912 – 1918 ( 2012 ). 22432446 

  16. Yao M. . GaAs Nanowire Array Solar Cells with Axial p–i–n Junctions . Nano Letters. 14 , 3293 – 3303 ( 2014 ). 24849203 

  17. Azizur-Rahman K. M. & LaPierre R. R. Wavelength-selective absorptance in GaAs, InP and InAs nanowire arrays . Nanotechnology. 26 , 7 ( 2015 ). 

  18. Brönstrup G. . Optical Properties of Individual Silicon Nanowires for Photonic Devices . ACS Nano. 4 , 7113 – 7122 ( 2010 ). 21080685 

  19. Fountaine K. T. , Kendall C. G. & Atwater H. A. Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation . Opt. Express. 22 , A930 – A940 ( 2014 ). 24922398 

  20. Fountaine K. T. , Whitney W. S. & Atwater H. A. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes . J. Appl. Phys. 116 , 6 ( 2014 ). 

  21. Anttu N. & Xu H. Q. Efficient light management in vertical nanowire arrays for photovoltaics . Opt. Express. 21 , A558 – A575 ( 2013 ). 24104444 

  22. Foldyna M. , Yu L. & Roca i Cabarrocas P. Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells . Sol. Energ. Mat. Sol. Cells . 117 , 645 – 651 ( 2013 ). 

  23. Sturmberg B. C. P. . Optimizing Photovoltaic Charge Generation of Nanowire Arrays: A Simple Semi-Analytic Approach . ACS Photonics . 1 , 683 – 689 ( 2014 ). 

  24. Xu T. & Qiao Q. Conjugated polymer–inorganic semiconductor hybrid solar cells . Energy Environ Sci . 4 , 2700 ( 2011 ). 

  25. Wu D. , Tang X. & Li X. Optimization of the Nanowire Size and Distribution of Compound Semiconductor Nanowire-Based Hybrid Solar Cells . IEEE J. Photovolt. PP, 1 – 7 ( 2015 ). 

  26. Shalev G. , Schmitt S. W. , Bronstrup G. & Christiansen S. Maximizing the ultimate absorption efficiency of vertically-aligned semiconductor nanowire arrays with wires of a low absorption cross-section . Nano Energy. 12 , 801 – 809 ( 2015 ). 

  27. Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37 Degree Tilted Surface, ISO 9845-1. 

  28. Kim S. J. . Superabsorbing, Artificial Metal Films Constructed from Semiconductor Nanoantennas . Nano Letters. 16 , 3801 – 3808 ( 2016 ). 27149008 

  29. Kim S. J. , Fan P. , Kang J.-H. & Brongersma M. L. Creating semiconductor metafilms with designer absorption spectra . Nature Communications . 6 , 7591 ( 2015 ). 

  30. de Rio J. A. & Whitaker S. Maxwell’s equations in two-phase systems I: Local electrodynamic equilibrium . Transport Porous Med . 39 , 159 – 186 ( 2000 ). 

  31. Del Rio J. A. & Whitaker S. Maxwell’s equations in two-phase systems II: Two-equation model . Transport Porous Med . 39 , 259 – 287 ( 2000 ). 

  32. Richard S. , Aniel F. & Fishman G. Energy-band structure of Ge, Si, and GaAs: A thirty-band kp method . Phys. Rev. B. 70 , 235204 ( 2004 ). 

  33. I . A GaAs Nanowire Array Solar Cell With 15.3% Efficiency at 1 Sun. IEEE J. Photovolt . 6 , 185-190(2016). 

  34. Hua B. , Wang B. M. , Yu M. , Leu P. W. & Fan Z. Y. Rational geometrical design of multi-diameter nanopillars for efficient light harvesting . Nano Energy 2 , 951 – 957 ( 2013 ). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로