$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Novel laser processed shape memory alloy actuator design with an embedded strain gauge sensor using dual resistance measurements. Part I: Fabrication and model-based position estimation

Sensors and actuators. A, Physical, v.263, 2017년, pp.234 - 245  

Zamani, Nima (E3-3148, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada) ,  Khamesee, Mir Behrad (E3-3148, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada) ,  Khan, Mohammad Ibraheem (SmarterAlloys Inc., 75 Bathurst Drive, Suite B, Waterloo, Ontario N2V 1N2, Canada)

Abstract AI-Helper 아이콘AI-Helper

Abstract Shape memory alloys have sparked great amount of interest in the field of actuation over the past decades. Until now, sensorless position estimation of SMA actuators under dynamic unknown applied stresses has not been feasible due to the complexity of the system and the number of unknown p...

주제어

참고문헌 (78)

  1. J. Am. Chem. Soc. Ölander 54 1932 3819 1906 An electrochemical investigation of solid cadmium-gold alloys 

  2. J. Intell. Mater. Syst. Struct. Luo 11 7 503 2000 10.1106/92YH-9YU9-HVW4-RVKT A shape memory alloy actuator using Peltier modules and R-phase transition 

  3. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292) Laurentis 3 May 2363 2002 10.1109/ROBOT.2002.1013585 Optimal design of shape memory alloy wire bundle actuators 

  4. J. Mater. Eng. Perform. O’Toole 18 5-6 781 2009 10.1007/s11665-009-9431-9 Analysis and evaluation of the dynamic performance of SMA actuators for prosthetic hand design 

  5. DETC’00: 26th Biennial Mechanisms and Robotics Conference Mosley 123 March 2001 1 2000 Design and control of a shape memory alloy wire bundle actuator 

  6. Acta Mater. Frenzel 90 213 2015 10.1016/j.actamat.2015.02.029 On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys 

  7. Smart Mater. Struct. Saghaian 25 9 095029 2016 10.1088/0964-1726/25/9/095029 Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys 

  8. Sens. Actuators A: Phys. Villoslada 236 257 2015 10.1016/j.sna.2015.10.006 Position control of a shape memory alloy actuator using a four-term bilinear PID controller 

  9. Sens. Actuators A: Phys. Hattori 219 47 2014 10.1016/j.sna.2014.08.013 Design of an impact drive actuator using a shape memory alloy wire 

  10. Sens. Actuators A: Phys. Guo 225 71 2015 10.1016/j.sna.2015.01.016 Design and control of a novel compliant differential shape memory alloy actuator 

  11. Mechatronics Sayyaadi 22 7 945 2012 10.1016/j.mechatronics.2012.06.003 Position control of shape memory alloy actuator based on the generalized Prandtl-Ishlinskii inverse model 

  12. Smart Mater. Struct. Hannen 21 8 085015 2012 10.1088/0964-1726/21/8/085015 Indirect intelligent sliding mode control of a shape memory alloy actuated flexible beam using hysteretic recurrent neural networks 

  13. Trans. Control Syst. Technol. Madill 6 4 473 1998 10.1109/87.701339 Modeling and L2-stability of a shape memory alloy position control system 

  14. IEEE Ikuta 427 1988 Shape memory alloy servo actuator system with electric resistance feedback and application for active Endoscope Koji 

  15. J. Intell. Mater. Syst. Struct. Yousefian 26 4 450 2014 10.1177/1045389X14529031 Sensorless resistive-based control of shape memory alloy actuators in locking mechanism 

  16. Sensors Liu 10 1 112 2009 10.3390/s100100112 Tracking control of shape-memory-alloy actuators based on self-sensing feedback and inverse hysteresis compensation 

  17. Smart Mater. Struct. Song 12 2 223 2003 10.1088/0964-1726/12/2/310 Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller 

  18. Song 2011 Resistance Modelling of SMA Wire Actuators 

  19. J. Process Control Tai 22 4 766 2012 10.1016/j.jprocont.2012.02.007 A hysteresis functional link artificial neural network for identification and model predictive control of SMA actuator 

  20. Neurocomputing Wang 134 289 2014 10.1016/j.neucom.2013.09.050 Innovative NARX recurrent neural network model for ultra-thin shape memory alloy wire 

  21. ISA Trans. Josephine Selvarani Ruth 53 2 289 2014 10.1016/j.isatra.2013.11.002 Differential resistance feedback control of a self-sensing shape memory alloy actuated system 

  22. Smart Mater. Struct. Ma 13 4 777 2004 10.1088/0964-1726/13/4/015 Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks 

  23. Sensors (Basel, Switzerland) Wang 12 6 7682 2012 10.3390/s120607682 An accurately controlled antagonistic shape memory alloy actuator with self-sensing 

  24. Sreekanth 343 2015 Rise Time Based Characterization of Sub-millimeter SMA Helical Actuator for Sensorless Displacement Estimation 

  25. Smart Mater. Struct. Kim 22 2 025001 2013 10.1088/0964-1726/22/2/025001 Sensorless displacement estimation of a shape memory alloy coil spring actuator using inductance 

  26. Weijde 2692 2015 Force Sensing for Compliant Actuators Using Coil Spring Inductance (1) 

  27. Khan 2011 Pulse Nd:YAG Laser Processing of Nitinol 

  28. Daly 2012 Thermomechanical Response of Laser Processed Nickel-Titanium Shape Memory Alloy 

  29. Pequegnat 2014 Novel Laser Based NiTi Shape Memory Alloy Processing Protocol for Medical Device Applications By 

  30. Wang 2013 Multiple Memory Material Processing for Augmentation of Local Pseudoelasticity and Corrosion Resistance of NiTi-based Shape Memory Alloys 

  31. Adv. Eng. Mater. Khan 15 5 386 2013 10.1002/adem.201200246 Multiple memory shape memory alloys 

  32. IOPscience Pequegnat 2016 Dynamic actuation of a novel laser-processed NiTi linear actuator 

  33. Acta Mater. Frenzel 58 9 3444 2010 10.1016/j.actamat.2010.02.019 Influence of Ni on martensitic phase transformations in NiTi shape memory alloys 

  34. Acta Metall. Mater. Liu 42 7 2401 1994 10.1016/0956-7151(94)90318-2 Thermodynamic analysis of the martensitic transformation in NiTi - I. Effect of heat treatment on transformation behaviour 

  35. Mater. Sci. Eng. A Tadayyon 662 564 2016 10.1016/j.msea.2016.03.004 The effect of annealing on the mechanical properties and microstructural evolution of Ti-rich NiTi shape memory alloy 

  36. Fernandes 3 2013 Shape Memory Alloys: Processing, Characterization and Applications Processing, Characterization and Applications Thermomechanical treatments for Ni-Ti alloys 

  37. Scr. Mater. Chrobak 48 5 571 2003 10.1016/S1359-6462(02)00475-X Effect of early stages of precipitation and recovery on the multi-step transformation in deformed and annealed near-equiatomic NiTi alloy 

  38. Mater. Manuf. Process. Karimzadeh 6914 June 2015 Adjustment of aging temperature for reaching superelasticity in highly Ni-rich Ti-51.5Ni NiTi shape memory alloy 

  39. Mater. Sci. Eng. A Khalil-Allafi 378 1-2 SPEC. ISS 148 2004 10.1016/j.msea.2003.10.335 On the influence of heterogeneous precipitation on martensitic transformations in a Ni-rich NiTi shape memory alloy 

  40. Panton 2016 Laser Processing, Thermomechanical Processing, and Thermomechanical Fatigue of NiTi Shape Memory Alloys 

  41. Proc. Soc. Exp. Mech. Inc. Urbina 53 6 1415 2013 10.1007/s11340-013-9756-z New understanding of the influence of the pre-training phase transformation behaviour on the TWSME in NiTi SMA wires 

  42. Mater. Sci. Eng. A Wada 481-482 1-2 C 166 2008 10.1016/j.msea.2007.02.143 Thermomechanical training and the shape recovery characteristics of NiTi alloys 

  43. Mater. Sci. Forum Contardo 56-58 7 529 1990 10.4028/www.scientific.net/MSF.56-58.529 The two way memory effect in a Cu-Zn-Al alloy: the behaviour during the training process 

  44. Metall. Mater. Trans. A Chang 32 7 1629 2001 10.1007/s11661-001-0141-7 Two-way shape memory effect of NiTi alloy induced by constraint aging treatment at room temperature 

  45. J. Alloys Compd. Lahoz 381 1-2 130 2004 10.1016/j.jallcom.2004.03.080 Training and two-way shape memory in NiTi alloys: influence on thermal parameters 

  46. Converter 1 2005 AVR121: Enhancing ADC Resolution by Oversampling Microcontrollers 

  47. Atmel 15 2006 8-Bit AVR Microcontrollers, Application Note 

  48. Incropera 2007 Fundamentals of Heat and Mass Transfer, 7th Edition, Vol. 6th of Dekker Mechanical Engineering 

  49. Smart Mater. Struct. Shu 265 265 1997 10.1088/0964-1726/6/3/005 Modeling of a flexible beam actuated by shape memory alloy wires 

  50. ASME Trans. Mech. Dutta 10 2 189 2005 Differential hysteresis modeling of a shape memory alloy wire actuator 

  51. J. Vib. Acoust. Elahinia 124 4 566 2002 10.1115/1.1501285 Nonlinear control of a shape memory alloy actuated manipulator 

  52. Sensors (Basel, Switzerland) Zhang 13 10 12958 2013 10.3390/s131012958 Electrical resistivity-based study of self-sensing properties for shape memory alloy-actuated artificial muscle 

  53. Smart Mater. Struct. Elahinia 14 6 1297 2005 10.1088/0964-1726/14/6/022 An enhanced SMA phenomenological model: I. The shortcomings of the existing models 

  54. Smart Mater. Struct. Elahinia 14 6 1297 2005 10.1088/0964-1726/14/6/022 An enhanced SMA phenomenological model: II. The experimental study 

  55. Smart Mater. Struct. Frost 19 9 094010 2010 10.1088/0964-1726/19/9/094010 Thermomechanical model for NiTi shape memory wires 

  56. Int. J. Numer. Methods Eng. Qidwai 47 6 1123 2000 10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms 

  57. J. Intell. Mater. Syst. Struct. Brinson 4 2 229 1993 10.1177/1045389X9300400213 Dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable 

  58. Universiq 1 1999 Natural Convection Heat Transfer From a Vertical 

  59. Boetcher 2014 Natural Convection from Circular Cylinders 

  60. Dutta 1007 2005 Modeling and Control of a Shape Memory Alloy Actuator 

  61. Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition Eisakhani 1 2014 Electrical resistance and natural convection heat transfer modeling of shape memory alloy wires 

  62. Int. J. Plast. Huang 16 10 1371 2000 10.1016/S0749-6419(00)00014-0 Multivariant micromechanical model for SMAs. Part 2. Polycrystal model 

  63. Int. J. Plast. Gao 16 10 1345 2000 10.1016/S0749-6419(00)00013-9 Multivariant micromechanical model for SMAs. Part 1. Crystallographic issues for single crystal model 

  64. Int. J. Solids Struct. Shaw 39 5 1275 2002 10.1016/S0020-7683(01)00242-6 A thermochemical model for a 1-D shape memory alloy wire with propagating instabilities 

  65. Int. J. Plast. Boyd 12 6 805 1996 10.1016/S0749-6419(96)00030-7 A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy 

  66. J.A. Shaw, B.-C. Chang, M.A. Iadicola, Y.M. Leroy, Thermodynamics of a 1-D Shape Memory Alloy: Modeling, Experiments, and Application. 

  67. G.V. Webb, D.C. Lagoudas, Hysteresis Modeling of SMA Actuators for Control Applications arXiv:0803973233, doi:0803973233. 

  68. Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), vol. 3 Gorbet 2161 1998 10.1109/ROBOT.1998.680641 Preisach model identification of a two-wire SMA actuator 

  69. Shape Mem. Alloys Luo 61 2010 Hysteresis behavious and modeling of SMA actuators 

  70. IEEE Trans. Magnet. Adly 34 3 629 1998 10.1109/20.668057 Using neural networks in the identification of Preisach-type∖nhysteresis models 

  71. Sens. Actuators A: Phys. Chuntao 112 1 49 2004 10.1016/j.sna.2003.11.016 A neural networks model for hysteresis nonlinearity 

  72. IEEE Trans. Control Syst. Technol. Jayender 16 2 279 2008 10.1109/TCST.2007.903391 Modeling and control of shape memory alloy actuators 

  73. J. Intell. Mater. Syst. Struct. Liang 8 4 303 1997 10.1177/1045389X9700800403 Design of shape memory alloy actuators 

  74. J. Intell. Mater. Syst. Struct. Ayvali 25 6 720 2014 10.1177/1045389X13502576 Pulse width modulation-based temperature tracking for feedback control of a shape memory alloy actuator 

  75. Mater. Sci. Eng. A Novák 481-482 1-2 C 127 2008 10.1016/j.msea.2007.02.162 Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: experiments and simulation 

  76. Smart Mater. Struct. Maletta 21 11 112001 2012 10.1088/0964-1726/21/11/112001 Fatigue of pseudoelastic NiTi within the stress-induced transformation regime: a modified Coffin-Manson approach 

  77. Le Journal de Physique IV Airoldi 07 C5 1997 The electric resistance of shape memory alloys in the pseudoelastic regime 

  78. P. Ioannou, B. Fidan. Adaptive Control Tutorial, Soc. Ind. Appl. Math. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로