$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing 원문보기

Royal Society Open Science, v.4 no.8, 2017년, pp.170183 -   

Achache, Yonathan (TASP—) ,  Sapir, Nir (Technion Autonomous Systems Program , Technion-Israel Institute of Technology , Haifa, Israel) ,  Elimelech, Yossef (Animal Flight Laboratory, Department of Evolutionary and Environmental Biology , University of Haifa , , Israel)

Abstract AI-Helper 아이콘AI-Helper

The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle—especially during flight-feather moult, in w...

주제어

참고문헌 (57)

  1. 1 Pearson OP 1954 The daily energy requirements of a wild Anna hummingbird . Condor. 56 , 317 – 322 . ( doi:10.2307/1365017 ) 

  2. 2 Epting RJ 1980 Functional dependence of the power for hovering on wing disc loading in hummingbirds . Physiol. Zool. 53 , 347 – 357 . ( doi:10.1086/physzool.53.4.30157873 ) 

  3. 3 Warrick D , Hedrick T , Fernández MJ , Tobalske B , Biewener A 2012 Hummingbird flight . Curr. Biol. 22 , R472 – R477 . ( doi:10.1016/j.cub.2012.04.057 ) 22720675 

  4. 4 Chai P , Millard D 1997 Flight and size constraints: hovering performance of large hummingbirds under maximal loading . J. Exp. Biol. 200 , 2757 – 2763 . 9418032 

  5. 5 Weis-Fogh T 1972 Energetics of hovering flight in hummingbirds and in drosophila . J. Exp. Biol. 56 , 79 – 104 . 

  6. 6 Williamson FSL 1956 The molt and testis cycles of the Anna hummingbird . Condor 58 , 342 – 366 . ( doi:10.2307/1365054 ) 

  7. 7 Chai P 1997 Hummingbird hovering energetics during moult of primary flight feathers . J. Exp. Biol. 200 , 1527 – 1536 . 9192500 

  8. 8 Walsberg GE 1983 Avian ecological energetics. In Avian biology (eds DS Farner, JR King, and KC Parkes), pp. 120–161. New York, NY: Academic Press . 

  9. 9 Tucker VA 1991 The effect of molting on the gliding performance of a harris hawk ( Parabuteo unicinctus ) . Auk 108 , 108 – 113 . ( doi:10.2307/4088054 ) 

  10. 10 Hedenström A , Sunada S 1999 On the aerodynamics of moult gaps in birds . J. Exp. Biol. 202 , 67 – 76 . 9841896 

  11. 11 Bridge ES 2003 Effects of simulated primary moult on pigeon flight . Ornis Fenn. 80 , 121 – 129 . 

  12. 12 Chai P , Dudley R 1999 Maximum flight performance of hummingbirds: Capacities, constraints, and trade-offs . Am. Nat. 153 , 398 – 411 . 

  13. 13 Swaddle JP , Witter MS , Cuthill IC , Budden A , McCowen P 1996 Plumage condition affects flight performance in common starlings: implications for developmental homeostasis, abrasion and moult . J. Avian Biol. 27 , 103 – 111 . ( doi:10.2307/3677139 ) 

  14. 14 Achache Y , Sapir N , Elimelech Y In preparation. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult . 

  15. 15 Ellington CP 2006 Insects versus birds: the great divide. In Collection of Technical Papers: 44th AIAA Aerospace Sciences Meeting , vol. 1, pp. 450–455 . 

  16. 16 Altshuler DL , Dudley R , Ellington CP 2004 Aerodynamic forces of revolving hummingbird wings and wing models . J. Zool. 264 , 327 – 332 . ( doi:10.1017/S0952836904005813 ) 

  17. 17 Tobalske BW , Warrick DR , Clark CJ , Powers DR , Hedrick TL , Hyder GA , Biewener AA 2007 Three-dimensional kinematics of hummingbird flight . J. Exp. Biol. 210 , 2368 – 2382 . ( doi:10.1242/jeb.005686 ) 17575042 

  18. 18 Dudley R 2000 The biomechanics of insect flight: form, function, evolution . Princeton, NJ : Princeton University Press . 

  19. 19 Warrick DR , Tobalske BW , Powers DR 2009 Lift production in the hovering hummingbird . Proc. R. Soc. B 276 , 3747 – 3752 . ( doi:10.1098/rspb.2009.1003 ) 

  20. 20 Wolf M , Ortega-Jimenez VM , Dudley R 2013 Structure of the vortex wake in hovering Anna’s hummingbirds ( Calypte anna ) . Proc. R. Soc. B 280 , 20132391 ( doi:10.1098/rspb.2013.2391 ) 

  21. 21 Warrick DR , Tobalske BW , Powers DR 2005 Aerodynamics of the hovering hummingbird . Nature 435 , 1094 – 1097 . ( doi:10.1038/nature03647 ) 15973407 

  22. 22 Kruyt JW , Quicazán-Rubio EM , Van Heijst GF , Altshuler DL , Lentink D 2014 Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors . J. R. Soc. Interface 11 , 20140585 ( doi:10.1098/rsif.2014.0585 ) 25079868 

  23. 23 Ellington CP , Van Berg CD , Willmott AP , Thomas ALR 1996 Leading-edge vortices in insect flight . Nature 384 , 626 – 630 . ( doi:10.1038/384626a0 ) 

  24. 24 Van Den Berg C , Ellington CP 1997 The three-dimensional leading-edge vortex of a ‘hovering’ model hawkmoth . Phil. Trans. R. Soc. B 352 , 329 – 340 . ( doi:10.1098/rstb.1997.0024 ) 

  25. 25 Bomphrey RJ , Lawson NJ , Harding NJ , Taylor GK , Thomas ALR 2005 The aerodynamics of Manduca sexta : Digital particle image velocimetry analysis of the leading-edge vortex . J. Exp. Biol. 208 , 1079 – 1094 . ( doi:10.1242/jeb.01471 ) 15767309 

  26. 26 Dickinson MH , Lehmann F-O , Sane SP 1999 Wing rotation and the aerodynamic basis of insect flight . Science 284 , 1954 – 1960 . ( doi:10.1126/science.284.5422.1954 ) 10373107 

  27. 27 Sane SP , Dickinson MH 2001 The control of flight force by a flapping wing: lift and drag production . J. Exp. Biol. 204 , 2607 – 2626 . 11533111 

  28. 28 Birch JM , Dickson WB , Dickinson MH 2004 Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers . J. Exp. Biol. 207 , 1063 – 1072 . ( doi:10.1242/jeb.00848 ) 14978049 

  29. 29 Ellington CP , Usherwood JR 2001 Lift and drag characteristics of rotary and flapping wings , pp. 231–248. American Institute of Aeronautics and Astronautics . 

  30. 30 Elimelech Y , Ellington CP 2013 Analysis of the transitional flow field over a fixed hummingbird wing . J. Exp. Biol. 216 , 303 – 318 . ( doi:10.1242/jeb.075341 ) 22996450 

  31. 31 Chai P , Dudley R 1995 Limits to vertebrate locomotor energetics suggested by hummingbirds hovering in heliox . Nature 377 , 722 – 725 . ( doi:10.1038/377722a0 ) 

  32. 32 McNab BK 2002 The physiological ecology of vertebrates: a view from energetics . Ithaca, NY : Comstock book. Cornell University Press . 

  33. 33 Rayner JMV 1988 Form and function in avian flight. In Current ornithology (ed. RF Johnston). Vol. 5, pp. 1–66. New York, NY: Springer US . 

  34. 34 Ellington CP 1984 The aerodynamics of hovering insect flight. ii. Morphological parameters for flying insects . Phil. Trans. R. Soc. Lond. B 305 , 17 – 40 . ( doi:10.1098/rstb.1984.0050 ) 

  35. 35 Ellington CP 1984 The aerodynamics of hovering insect flight. iv. Aerodynamic mechanisms . Phil. Trans. R. Soc. Lond B 305 , 79 – 113 . ( doi:10.1098/rstb.1984.0052 ) 

  36. 36 Altshuler DL , Welch KC Jr , Cho BH , Welch DB , Lin AF , Dickson WB , Dickinson MH 2010 Neuromuscular control of wingbeat kinematics in Anna’s hummingbirds ( Calypte anna ) . J. Exp. Biol. 213 , 2507 – 2514 . ( doi:10.1242/jeb.043497 ) 20581280 

  37. 37 Sapir N , Dudley R 2012 Backward flight in hummingbirds employs unique kinematic adjustments and entails low metabolic cost . J. Exp. Biol. 215 , 3603 – 3611 . ( doi:10.1242/jeb.073114 ) 23014570 

  38. 38 Clark CJ , Dudley R 2010 Hovering and forward flight energetics in Anna’s and Allen’s hummingbirds . Physiol. Biochem. Zool. 83 , 654 – 662 . ( doi:10.1086/653477 ) 20455711 

  39. 39 Altshuler DL , Quicazán-Rubio EM , Segre PS , Middleton KM 2012 Wingbeat kinematics and motor control of yaw turns in Anna’s hummingbirds ( Calypte anna ) . J. Exp. Biol. 215 , 4070 – 4084 . ( doi:10.1242/jeb.075044 ) 22933610 

  40. 40 Tanaka H , Suzuki H , Kitamura I , Maeda M , Liu H 2013 Lift generation of hummingbird wing models with flexible loosened membranes. In IEEE International Conference on Intelligent Robots and System , pp. 3777–3783 . 

  41. 41 Hedrick TL , Tobalske BW , Ros IG , Warrick DR , Biewener AA 2012 Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio . Phil. Trans. R. Soc. B 279 , 1986 – 1992 . ( doi:10.1098/rspb.2011.2238 ) 

  42. 42 Kruyt JW , Van Heijst GF , Altshuler DL , Lentink D 2015 Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio . J. R. Soc. Interface 12 , 20150051 ( doi:10.1098/rsif.2015.0051 ) 25788539 

  43. 43 Polhamus EC 1971 Predictions of vortex-lift characteristics by a leading- edge suction analogy . J. Aircr. 8 , 193 – 199 . ( doi:10.2514/3.44254 ) 

  44. 44 Lentink D , Dickinson MH 2009 Rotational accelerations stabilize leading edge vortices on revolving fly wings . J. Exp. Biol. 212 , 2705 – 2719 . ( doi:10.1242/jeb.022269 ) 19648415 

  45. 45 Usherwood JR , Ellington CP 2002 The aerodynamics of revolving wings. i. Model hawkmoth wings . J. Exp. Biol. 205 , 1547 – 1564 . 12000800 

  46. 46 Elimelech Y , Kolomenskiy D , Dalziel SB , Moffatt HK 2013 Evolution of the leading-edge vortex over an accelerating rotating wing . Procedia IUTAM 7 , 233 – 242 . ( doi:10.1016/j.piutam.2013.03.027 ) 

  47. 47 Nolan GR 2004 Aerodynamics of vortex lift in insect flight. PhD thesis, University of Cambridge, Cambridge, UK 27, 103–111 . 

  48. 48 Sirovich L 1987 Turbulence and the dynamics of coherent structures. Part 1: Coherent structures . Quart. Appl. Math. 43 , 561 – 571 . ( doi:10.1090/qam/910462 ) 

  49. 49 Lengani D , Simoni D , Ubaldi M , Zunino P 2014 POD analysis of the unsteady behavior of a laminar separation bubble . Exper. Thermal Fluid Sci. 58 , 70 – 79 . ( doi:10.1016/j.expthermflusci.2014.06.012 ) 

  50. 50 Wee D , Yi T , Annaswamy A , Ghoniem AF 2004 Self-sustained oscillations and vortex shedding in backward-facing step flows: simulation and linear instability analysis . Phys. Fluids 16 , 3361 – 3373 . ( doi:10.1063/1.1773091 ) 

  51. 51 Michalke A 1969 Note on spatially growing three-dimensional disturbances in a free shear layer . J. Fluid Mech. 38 , 765 – 767 . ( doi:10.1017/S0022112069002588 ) 

  52. 52 Song J , Luo H , Hedrick TL 2014 Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird . J. R. Soc. Interface 11 , 20140541 ( doi:10.1098/rsif.2014.0541 ) 25008082 

  53. 53 Wang ZJ 2008 Aerodynamic efficiency of flapping flight: analysis of a two-stroke model . J. Exp. Biol. 211 , 234 – 238 . ( doi:10.1242/jeb.013797 ) 18165251 

  54. 54 Pitelka FA 1951 Ecologic overlap and interspecific strife in breeding population of Anna and Allen hummingbirds . Ecology 32 , 641 – 661 . ( doi:10.2307/1932731 ) 

  55. 55 Greenwalt CH 1975 The flight of birds . Trans. Am. Phil. Soc. 65 , 1 – 67 . ( doi:10.2307/1006161 ) 

  56. 56 Wells DJ 1993 Muscle performance in hovering hummingbirds . J. Exp. Biol. 178 , 39 – 57 . 

  57. 57 Achache Y , Sapir N , Elimelech Y 2017 Data from: Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing . Dryad Digital Repository . ( http://dx.doi.org/10.5061/dryad.mr556 ) 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로