$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

DNA replication through a chromatin environment 원문보기

Philosophical transactions. Biological sciences, v.372 no.1731, 2017년, pp.20160287 - 20160287  

Bellush, James M. (Molecular Biology Program, Memorial Sloan Kettering Cancer Center, , 1275 York Avenue, New York, NY 10065, USA) ,  Whitehouse, Iestyn (Molecular Biology Program, Memorial Sloan Kettering Cancer Center, , 1275 York Avenue, New York, NY 10065, USA)

Abstract AI-Helper 아이콘AI-Helper

Compaction of the genome into the nuclear space is achieved by wrapping DNA around octameric assemblies of histone proteins to form nucleosomes, the fundamental repeating unit of chromatin. Aside from providing a means by which to fit larger genomes into the cell, chromatinization of DNA is a crucia...

주제어

참고문헌 (89)

  1. On the regulation of DNA replication in bacteria. Cold Spring Harbor symposia on quantitative biology Jacob F 1963 

  2. O’Donnell, Michael, Langston, Lance, Stillman, Bruce. Principles and Concepts of DNA Replication in Bacteria, Archaea, and Eukarya. Cold Spring Harbor perspectives in biology, vol.5, no.7, a010108-a010108.

  3. Hyrien, Olivier. Peaks cloaked in the mist: The landscape of mammalian replication origins. The Journal of cell biology, vol.208, no.2, 147-160.

  4. Huberman, J.A., Spotila, L.D., Nawotka, K.A., El-Assouli, S.M., Davis, L.R.. The in vivo replication origin of the yeast 2μm plasmid. Cell, vol.51, no.3, 473-481.

  5. Remus, Dirk, Beuron, Fabienne, Tolun, Gökhan, Griffith, Jack D., Morris, Edward P., Diffley, John F.X.. Concerted Loading of Mcm2–7 Double Hexamers around DNA during DNA Replication Origin Licensing. Cell, vol.139, no.4, 719-730.

  6. Evrin, Cecile, Clarke, Pippa, Zech, Juergen, Lurz, Rudi, Sun, Jingchuan, Uhle, Stefan, Li, Huilin, Stillman, Bruce, Speck, Christian. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proceedings of the National Academy of Sciences of the United States of America, vol.106, no.48, 20240-20245.

  7. Bell, Stephen P., Labib, Karim. Chromosome Duplication in Saccharomyces cerevisiae. Genetics, vol.203, no.3, 1027-1067.

  8. Kaykov, Atanas, Nurse, Paul. The spatial and temporal organization of origin firing during the S-phase of fission yeast. Genome research, vol.25, no.3, 391-401.

  9. Rivera-Mulia, J., Gilbert, David M.. Replicating Large Genomes: Divide and Conquer. Molecular cell, vol.62, no.5, 756-765.

  10. Devbhandari, Sujan, Jiang, Jieqing, Kumar, Charanya, Whitehouse, Iestyn, Remus, Dirk. Chromatin Constrains the Initiation and Elongation of DNA Replication. Molecular cell, vol.65, no.1, 131-141.

  11. Kurat, Christoph F., Yeeles, Joseph T.P., Patel, Harshil, Early, Anne, Diffley, John F.X.. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates. Molecular cell, vol.65, no.1, 117-130.

  12. Gros, J., Devbhandari, S., Remus, D.. Origin plasticity during budding yeast DNA replication in vitro. The EMBO journal, vol.33, no.6, 621-636.

  13. On, Kin Fan, Beuron, Fabienne, Frith, David, Snijders, Ambrosius P, Morris, Edward P, Diffley, John F X. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. The EMBO journal, vol.33, no.6, 605-620.

  14. Eaton, Matthew L., Galani, Kyriaki, Kang, Sukhyun, Bell, Stephen P., MacAlpine, David M.. Conserved nucleosome positioning defines replication origins. Genes & development, vol.24, no.8, 748-753.

  15. Simpson, Robert T.. Nucleosome positioning can affect the function of a cis-acting DMA elementin vivo. Nature, vol.343, no.6256, 387-389.

  16. Lipford, J.Russell, Bell, Stephen P. Nucleosomes Positioned by ORC Facilitate the Initiation of DNA Replication. Molecular cell, vol.7, no.1, 21-30.

  17. Prioleau, Marie-Noelle, MacAlpine, David M.. DNA replication origins—where do we begin?. Genes & development, vol.30, no.15, 1683-1697.

  18. Schübeler, Dirk, Scalzo, David, Kooperberg, Charles, van Steensel, Bas, Delrow, Jeffrey, Groudine, Mark. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nature genetics, vol.32, no.3, 438-442.

  19. Miotto, Benoit, Ji, Zhe, Struhl, Kevin. Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers. Proceedings of the National Academy of Sciences of the United States of America, vol.113, no.33, E4810-E4819.

  20. Petryk, Nataliya, Kahli, Malik, d'Aubenton-Carafa, Yves, Jaszczyszyn, Yan, Shen, Yimin, Silvain, Maud, Thermes, Claude, Chen, Chun-Long, Hyrien, Olivier. Replication landscape of the human genome. Nature communications, vol.7, 10208-.

  21. Pourkarimi, Ehsan, Bellush, James M, Whitehouse, Iestyn. Spatiotemporal coupling and decoupling of gene transcription with DNA replication origins during embryogenesis in C. elegans. eLife, vol.5, e21728-.

  22. Rodríguez-Martínez, Marta, Pinzón, Natalia, Ghommidh, Charles, Beyne, Emmanuelle, Seitz, Hervé, Cayrou, Christelle, Méchali, Marcel. The gastrula transition reorganizes replication-origin selection in Caenorhabditis elegans. Nature structural & molecular biology, vol.24, no.3, 290-299.

  23. Jørgensen, Stine, Schotta, Gunnar, Sørensen, Claus Storgaard. Histone H4 Lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic acids research, vol.41, no.5, 2797-2806.

  24. Nishioka, Kenichi, Rice, Judd C., Sarma, Kavitha, Erdjument-Bromage, Hediye, Werner, Janis, Wang, Yanming, Chuikov, Sergei, Valenzuela, Pablo, Tempst, Paul, Steward, Ruth, Lis, John T., Allis, C.David, Reinberg, Danny. PR-Set7 Is a Nucleosome-Specific Methyltransferase that Modifies Lysine 20 of Histone H4 and Is Associated with Silent Chromatin. Molecular cell, vol.9, no.6, 1201-1213.

  25. Tardat, Mathieu, Murr, Rabih, Herceg, Zdenko, Sardet, Claude, Julien, Eric. PR-Set7–dependent lysine methylation ensures genome replication and stability through S phase. The Journal of cell biology, vol.179, no.7, 1413-1426.

  26. Tardat, Mathieu, Brustel, Julien, Kirsh, Olivier, Lefevbre, Christine, Callanan, Mary, Sardet, Claude, Julien, Eric. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nature cell biology, vol.12, no.11, 1086-1093.

  27. Beck, David B., Burton, Adam, Oda, Hisanobu, Ziegler-Birling, Céline, Torres-Padilla, Maria-Elena, Reinberg, Danny. The role of PR-Set7 in replication licensing depends on Suv4-20h. Genes & development, vol.26, no.23, 2580-2589.

  28. Armache, Karim-Jean, Garlick, Joseph D., Canzio, Daniele, Narlikar, Geeta J., Kingston, Robert E.. Structural Basis of Silencing: Sir3 BAH Domain in Complex with a Nucleosome at 3.0 Å Resolution. Science, vol.334, no.6058, 977-982.

  29. Kuo, Alex J., Song, Jikui, Cheung, Peggie, Ishibe-Murakami, Satoko, Yamazoe, Sayumi, Chen, James K., Patel, Dinshaw J., Gozani, Or. ORC1 BAH domain links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature, vol.484, no.7392, 115-119.

  30. Schotta, Gunnar, Lachner, Monika, Sarma, Kavitha, Ebert, Anja, Sengupta, Roopsha, Reuter, Gunter, Reinberg, Danny, Jenuwein, Thomas. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes & development, vol.18, no.11, 1251-1262.

  31. Saredi, Giulia, Huang, Hongda, Hammond, Colin M., Alabert, Constance, Bekker-Jensen, Simon, Forne, Ignasi, Reverón-Gómez, Nazaret, Foster, Benjamin M., Mlejnkova, Lucie, Bartke, Till, Cejka, Petr, Mailand, Niels, Imhof, Axel, Patel, Dinshaw J., Groth, Anja. H4 K20me0 marks post-replicative chromatin and recruits the TONSL-MMS22L DNA repair complex. Nature, vol.534, no.7609, 714-718.

  32. Nucleic Acids Res. Li Y 7204 44 2016 Methylation of histone H4 lysine 20 by PR-Set7 ensures the integrity of late replicating sequence domains in Drosophila 

  33. Shi, Xiaobing, Kachirskaia, Ioulia, Yamaguchi, Hiroshi, West, Lisandra E., Wen, Hong, Wang, Evelyn W., Dutta, Sucharita, Appella, Ettore, Gozani, Or. Modulation of p53 Function by SET8-Mediated Methylation at Lysine 382. Molecular cell, vol.27, no.4, 636-646.

  34. Takawa, Masashi, Cho, Hyun-Soo, Hayami, Shinya, Toyokawa, Gouji, Kogure, Masaharu, Yamane, Yuka, Iwai, Yukiko, Maejima, Kazuhiro, Ueda, Koji, Masuda, Akiko, Dohmae, Naoshi, Field, Helen I., Tsunoda, Tatsuhiko, Kobayashi, Takaaki, Akasu, Takayuki, Sugiyama, Masanori, Ohnuma, Shin-ichi, Atomi, Yutaka, Ponder, Bruce A.J., Nakamura, Yusuke, Hamamoto, Ryuji. Histone Lysine Methyltransferase SETD8 Promotes Carcinogenesis by Deregulating PCNA Expression. Cancer research : the official organ of the American Association for Cancer Research, Inc, vol.72, no.13, 3217-3227.

  35. Ferguson, B.M., Fangman, W.L.. A position effect on the time of replication origin activation in yeast. Cell, vol.68, no.2, 333-339.

  36. Goren, Alon, Tabib, Amalia, Hecht, Merav, Cedar, Howard. DNA replication timing of the human β-globin domain is controlled by histone modification at the origin. Genes & development, vol.22, no.10, 1319-1324.

  37. Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B.J., Grunstein, M.. Histone Acetylation Regulates the Time of Replication Origin Firing. Molecular cell, vol.10, no.5, 1223-1233.

  38. Sexton, T., Cavalli, G.. The Role of Chromosome Domains in Shaping the Functional Genome. Cell, vol.160, no.6, 1049-1059.

  39. Pope, Benjamin D., Ryba, Tyrone, Dileep, Vishnu, Yue, Feng, Wu, Weisheng, Denas, Olgert, Vera, Daniel L., Wang, Yanli, Hansen, R. Scott, Canfield, Theresa K., Thurman, Robert E., Cheng, Yong, Gülsoy, Günhan, Dennis, Jonathan H., Snyder, Michael P., Stamatoyannopoulos, John A., Taylor, James, Hardison, Ross C., Kahveci, Tamer, Ren, Bing, Gilbert, David M.. Topologically associating domains are stable units of replication-timing regulation. Nature, vol.515, no.7527, 402-405.

  40. Rivera-Mulia, Juan Carlos, Gilbert, David M. Replication timing and transcriptional control: beyond cause and effect—part III. Current opinion in cell biology, vol.40, 168-178.

  41. Dixon, Jesse R., Selvaraj, Siddarth, Yue, Feng, Kim, Audrey, Li, Yan, Shen, Yin, Hu, Ming, Liu, Jun S., Ren, Bing. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, vol.485, no.7398, 376-380.

  42. Dileep, Vishnu, Ay, Ferhat, Sima, Jiao, Vera, Daniel L., Noble, William S., Gilbert, David M.. Topologically associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication-timing program. Genome research, vol.25, no.8, 1104-1113.

  43. Knott, Simon R.V., Peace, Jared M., Ostrow, A., Gan, Y., Rex, Alexandra E., Viggiani, Christopher J., Tavare, S., Aparicio, Oscar M.. Forkhead Transcription Factors Establish Origin Timing and Long-Range Clustering in S. cerevisiae. Cell, vol.148, no.1, 99-111.

  44. Cornacchia, Daniela, Dileep, Vishnu, Quivy, Jean-Pierre, Foti, Rossana, Tili, Federico, Santarella-Mellwig, Rachel, Antony, Claude, Almouzni, Geneviève, Gilbert, David M, Buonomo, Sara B C. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells : Mouse Rif1 controls replication timing. The EMBO journal, vol.31, no.18, 3678-3690.

  45. Foti, Rossana, Gnan, Stefano, Cornacchia, Daniela, Dileep, Vishnu, Bulut-Karslioglu, Aydan, Diehl, Sarah, Buness, Andreas, Klein, Felix A., Huber, Wolfgang, Johnstone, Ewan, Loos, Remco, Bertone, Paul, Gilbert, David M., Manke, Thomas, Jenuwein, Thomas, Buonomo, Sara C.B.. Nuclear Architecture Organized by Rif1 Underpins the Replication-Timing Program. Molecular cell, vol.61, no.2, 260-273.

  46. McGuffee, Sean R., Smith, Duncan J., Whitehouse, I.. Quantitative, Genome-Wide Analysis of Eukaryotic Replication Initiation and Termination. Molecular cell, vol.50, no.1, 123-135.

  47. Smith, Duncan J., Whitehouse, Iestyn. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature, vol.483, no.7390, 434-438.

  48. Ho, Joshua W. K., Jung, Youngsook L., Liu, Tao, Alver, Burak H., Lee, Soohyun, Ikegami, Kohta, Sohn, Kyung-Ah, Minoda, Aki, Tolstorukov, Michael Y., Appert, Alex, Parker, Stephen C. J., Gu, Tingting, Kundaje, Anshul, Riddle, Nicole C., Bishop, Eric, Egelhofer, Thea A., Hu, Sheng'en Shawn, Alekseyenko, Artyom A., Rechtsteiner, Andreas, Asker, Dalal, Belsky, Jason A., Bowman, Sarah K., Chen, Q. Brent, Chen, Ron A.-J., Day, Daniel S., Dong, Yan, Dose, Andrea C., Duan, Xikun, Epstein, Charles B., Ercan, Sevinc, Feingold, Elise A., Ferrari, Francesco, Garrigues, Jacob M., Gehlenborg, Nils, Good, Peter J., Haseley, Psalm, He, Daniel, Herrmann, Moritz, Hoffman, Michael M., Jeffers, Tess E., Kharchenko, Peter V., Kolasinska-Zwierz, Paulina, Kotwaliwale, Chitra V., Kumar, Nischay, Langley, Sasha A., Larschan, Erica N., Latorre, Isabel, Libbrecht, Maxwell W., Lin, Xueqiu, Park, Richard. Comparative analysis of metazoan chromatin organization. Nature, vol.512, no.7515, 449-452.

  49. Collart, Clara, Allen, George E., Bradshaw, Charles R., Smith, James C., Zegerman, Philip. Titration of Four Replication Factors Is Essential for the Xenopus laevis Midblastula Transition. Science, vol.341, no.6148, 893-896.

  50. Mantiero, Davide, Mackenzie, Amanda, Donaldson, Anne, Zegerman, Philip. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast : Limiting replication factors execute temporal programme. The EMBO journal, vol.30, no.23, 4805-4814.

  51. Rhind, Nicholas, Gilbert, David M.. DNA Replication Timing. Cold Spring Harbor perspectives in biology, vol.5, no.8, a010132-a010132.

  52. Blow, J Julian, Ge, Xin Quan. A model for DNA replication showing how dormant origins safeguard against replication fork failure. EMBO reports, vol.10, no.4, 406-412.

  53. 10.4161/cc.10.18.17000 

  54. Tu, Benjamin P., Mohler, Rachel E., Liu, Jessica C., Dombek, Kenneth M., Young, Elton T., Synovec, Robert E., McKnight, Steven L.. Cyclic changes in metabolic state during the life of a yeast cell. Proceedings of the National Academy of Sciences of the United States of America, vol.104, no.43, 16886-16891.

  55. Lande-Diner, Laura, Zhang, Jianmin, Cedar, Howard. Shifts in Replication Timing Actively Affect Histone Acetylation during Nucleosome Reassembly. Molecular cell, vol.34, no.6, 767-774.

  56. Zhang, Jianmin, Xu, Feng, Hashimshony, Tamar, Keshet, Ilana, Cedar, Howard. Establishment of transcriptional competence in early and late S phase. Nature, vol.420, no.6912, 198-202.

  57. Georgescu, Roxana, Yuan, Zuanning, Bai, Lin, de Luna Almeida Santos, Ruda, Sun, Jingchuan, Zhang, Dan, Yurieva, Olga, Li, Huilin, O’Donnell, Michael E.. Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. Proceedings of the National Academy of Sciences of the United States of America, vol.114, no.5, E697-E706.

  58. Cold Spring Harb. Perspect Biol. Bell SD a012807 5 2017 10.1101/cshperspect.a012807 The minichromosome maintenance replicative helicase 

  59. Remus, D., Diffley, J.F.. Eukaryotic DNA replication control: Lock and load, then fire. Current opinion in cell biology, vol.21, no.6, 771-777.

  60. Sun, Jingchuan, Shi, Yi, Georgescu, Roxana E, Yuan, Zuanning, Chait, Brian T, Li, Huilin, O'Donnell, Michael E. The architecture of a eukaryotic replisome. Nature structural & molecular biology, vol.22, no.12, 976-982.

  61. Huang, Hongda, Strømme, Caroline B, Saredi, Giulia, Hödl, Martina, Strandsby, Anne, González-Aguilera, Cristina, Chen, Shoudeng, Groth, Anja, Patel, Dinshaw J. A unique binding mode enables MCM2 to chaperone histones H3–H4 at replication forks. Nature structural & molecular biology, vol.22, no.8, 618-626.

  62. Richet, Nicolas, Liu, Danni, Legrand, Pierre, Velours, Christophe, Corpet, Armelle, Gaubert, Albane, Bakail, May, Moal-Raisin, Gwenaelle, Guerois, Raphael, Compper, Christel, Besle, Arthur, Guichard, Berengère, Almouzni, Genevieve, Ochsenbein, Françoise. Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic acids research, vol.43, no.3, 1905-1917.

  63. Tran, Vuong, Lim, Cindy, Xie, Jing, Chen, Xin. Asymmetric Division of Drosophila Male Germline Stem Cell Shows Asymmetric Histone Distribution. Science, vol.338, no.6107, 679-682.

  64. Annunziato, Anthony T.. Split Decision: What Happens to Nucleosomes during DNA Replication?. The Journal of biological chemistry, vol.280, no.13, 12065-12068.

  65. Ramachandran, Srinivas, Henikoff, Steven. Replicating nucleosomes. Science advances, vol.1, no.7, e1500587-.

  66. Hsieh, Fu-Kai, Kulaeva, Olga I., Patel, Smita S., Dyer, Pamela N., Luger, Karolin, Reinberg, Danny, Studitsky, Vasily M.. Histone chaperone FACT action during transcription through chromatin by RNA polymerase II. Proceedings of the National Academy of Sciences of the United States of America, vol.110, no.19, 7654-7659.

  67. Xin, Hua, Takahata, Shinya, Blanksma, Mary, McCullough, Laura, Stillman, David J., Formosa, Tim. yFACT Induces Global Accessibility of Nucleosomal DNA without H2A-H2B Displacement. Molecular cell, vol.35, no.3, 365-376.

  68. Tsunaka, Yasuo, Fujiwara, Yoshie, Oyama, Takuji, Hirose, Susumu, Morikawa, Kosuke. Integrated molecular mechanism directing nucleosome reorganization by human FACT. Genes & development, vol.30, no.6, 673-686.

  69. Gambus, Agnieszka, Jones, Richard C., Sanchez-Diaz, Alberto, Kanemaki, Masato, van Deursen, Frederick, Edmondson, Ricky D., Labib, Karim. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nature cell biology, vol.8, no.4, 358-366.

  70. Wittmeyer, Jacqueline, Formosa, Tim. The Saccharomyces cerevisiae DNA Polymerase α Catalytic Subunit Interacts with Cdc68/Spt16 and with Pob3, a Protein Similar to an HMG1-Like Protein. Molecular and cellular biology, vol.17, no.7, 4178-4190.

  71. Foltman, M., Evrin, C., De Piccoli, G., Jones, Richard C., Edmondson, Rick D., Katou, Y., Nakato, R., Shirahige, K., Labib, K.. Eukaryotic Replisome Components Cooperate to Process Histones During Chromosome Replication. Cell reports, vol.3, no.3, 892-904.

  72. Hammond, Colin M., Strømme, Caroline B., Huang, Hongda, Patel, Dinshaw J., Groth, Anja. Histone chaperone networks shaping chromatin function. Nature reviews. Molecular cell biology, vol.18, no.3, 141-158.

  73. Yadav, T., Whitehouse, I.. Replication-Coupled Nucleosome Assembly and Positioning by ATP-Dependent Chromatin-Remodeling Enzymes. Cell reports, vol.15, no.4, 715-723.

  74. Collins, Nadine, Poot, Raymond A., Kukimoto, Iwao, García-Jiménez, Custodia, Dellaire, Graham, Varga-Weisz, Patrick D.. An ACF1–ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nature genetics, vol.32, no.4, 627-632.

  75. Shimada, K., Oma, Y., Schleker, T., Kugou, K., Ohta, K., Harata, M., Gasser, S.M.. Ino80 Chromatin Remodeling Complex Promotes Recovery of Stalled Replication Forks. Current biology : CB, vol.18, no.8, 566-575.

  76. Lee, Han-Sae, Lee, Shin-Ai, Hur, Shin-Kyoung, Seo, Jeong-Wook, Kwon, Jongbum. Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis. Nature communications, vol.5, 5128-.

  77. Lafon, A., Taranum, S., Pietrocola, F., Dingli, F., Loew, D., Brahma, S., Bartholomew, B., Papamichos-Chronakis, M.. INO80 Chromatin Remodeler Facilitates Release of RNA Polymerase II from Chromatin for Ubiquitin-Mediated Proteasomal Degradation. Molecular cell, vol.60, no.5, 784-796.

  78. Poli, Jéréôme, Gerhold, Christian-Benedikt, Tosi, Alessandro, Hustedt, Nicole, Seeber, Andrew, Sack, Ragna, Herzog, Franz, Pasero, Philippe, Shimada, Kenji, Hopfner, Karl-Peter, Gasser, Susan M.. Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes & development, vol.30, no.3, 337-354.

  79. Yeeles, Joseph T.P., Janska, Agnieska, Early, Anne, Diffley, John F.X.. How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication. Molecular cell, vol.65, no.1, 105-116.

  80. Jin, Yong Hwan, Ayyagari, Rao, Resnick, Michael A., Gordenin, Dmitry A., Burgers, Peter M.J.. Okazaki Fragment Maturation in Yeast. The Journal of biological chemistry, vol.278, no.3, 1626-1633.

  81. 10.1016/S0076-6879(03)75006-X 

  82. Groth, Anja, Ray-Gallet, Dominique, Quivy, Jean-Pierre, Lukas, Jiri, Bartek, Jiri, Almouzni, Geneviève. Human Asf1 Regulates the Flow of S Phase Histones during Replicational Stress. Molecular cell, vol.17, no.2, 301-311.

  83. Mejlvang, Jakob, Feng, Yunpeng, Alabert, Constance, Neelsen, Kai J., Jasencakova, Zuzana, Zhao, Xiaobei, Lees, Michael, Sandelin, Albin, Pasero, Philippe, Lopes, Massimo, Groth, Anja. New histone supply regulates replication fork speed and PCNA unloading. The Journal of cell biology, vol.204, no.1, 29-43.

  84. San Filippo, Joseph, Sung, Patrick, Klein, Hannah. Mechanism of Eukaryotic Homologous Recombination. Annual review of biochemistry, vol.77, 229-257.

  85. O'Donnell, Lara, Panier, Stephanie, Wildenhain, Jan, Tkach, Johnny M., Al-Hakim, Abdallah, Landry, Marie-Claude, Escribano-Diaz, Cristina, Szilard, Rachel K., Young, Jordan T.F., Munro, Meagan, Canny, Marella D., Kolas, Nadine K., Zhang, Wei, Harding, Shane M., Ylanko, Jarkko, Mendez, Megan, Mullin, Michael, Sun, Thomas, Habermann, Bianca, Datti, Alessandro, Bristow, Robert G., Gingras, Anne-Claude, Tyers, Michael D., Brown, Grant W., Durocher, Daniel. The MMS22L-TONSL Complex Mediates Recovery from Replication Stress and Homologous Recombination. Molecular cell, vol.40, no.4, 619-631.

  86. Duro, Eris, Lundin, Cecilia, Ask, Katrine, Sanchez-Pulido, Luis, MacArtney, Thomas J., Toth, Rachel, Ponting, Chris P., Groth, Anja, Helleday, Thomas, Rouse, John. Identification of the MMS22L-TONSL Complex that Promotes Homologous Recombination. Molecular cell, vol.40, no.4, 632-644.

  87. Piwko, Wojciech, Mlejnkova, Lucie J, Mutreja, Karun, Ranjha, Lepakshi, Stafa, Diana, Smirnov, Alexander, Brodersen, Mia ML, Zellweger, Ralph, Sturzenegger, Andreas, Janscak, Pavel, Lopes, Massimo, Peter, Matthias, Cejka, Petr. The MMS22L–TONSL heterodimer directly promotes RAD51‐dependent recombination upon replication stress. The EMBO journal, vol.35, no.23, 2584-2601.

  88. Jensen, Ryan B., Carreira, Aura, Kowalczykowski, Stephen C.. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature, vol.467, no.7316, 678-683.

  89. Liu, Jie, Doty, Tammy, Gibson, Bryan, Heyer, Wolf-Dietrich. Human BRCA2 protein promotes RAD51 filament formation on RPA-covered ssDNA. Nature structural & molecular biology, vol.17, no.10, 1260-1262.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로