$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Marine silicate weathering in the anoxic sediment of the Ulleung Basin: Evidence and consequences

Geochemistry, geophysics, geosystems : G³, v.17 no.8, 2016년, pp.3437 - 3453  

Kim, Ji‐Hoon (Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea) ,  Torres, Marta E. (College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA) ,  Haley, Brian A. (College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA) ,  Ryu, Jong‐Sik (Division of Environmental and Material Sciences, Korea Basic Science Institute, Chungbuk, South Korea) ,  Park, Myong‐Ho (Department of Earth System Sciences, Yonsei University, Seoul, South Korea) ,  Hong, Wei‐Li (CAGE‐) ,  Choi, Jiyoung (Center for Arctic Gas Hydrate, Environment and Climate, Department of Geology, UiT Arctic University of Norway, Tromsø, Norway)

Abstract AI-Helper 아이콘AI-Helper

AbstractMarine silicate weathering (MSiW) in anoxic sediments has been recently shown to be a significant sink for CO2 generated by methanogenesis. Independently, the roles of clay dehydration (illitization) in producing water and driving upward fluid advection have been well established in deep mar...

Abstract

Key PointsHigh 87Sr/86Sr, alkalinity, and dissolved cations in pore fluids reveal silicate weatheringMarine silicate weathering serves as the K+ source for illitization at depthMarine silicate weathering consumes CO2 generated by methanogenesis and generates alkalinity

주제어

참고문헌 (58)

  1. Aloisi , G. , K. Wallmann , M. Drews , and G. Bohrmann ( 2004 ), Evidence for the submarine weathering of silicate minerals in Black Sea sediments: possible implications for the marine Li and B cycles , Geochem. Geophy. Geosyst. , 5 , Q04007 , doi: 10.1029/2003GC000639 . 

  2. Awwiller D. N. ( 1993 ), Illite/smectite formation and potassium mass transfer during burial diagenesis of mudrocks: a study from the Texas Gulf Coast Paleocenee Eocene , J. Sediment. Petrol. , 63 , 501 – 512 , doi: 10.1306/D4267B3B-2B26-11D7-8648000102C1865D . 

  3. Bahk , J.‐J. , I.‐K. Um , B.‐Y. Yi , and D.‐G. Yoo ( 2016 ), Paleoceanographic implications and cyclostratigraphy of variations in well‐log data from the western slope of the Ulleung Basin, East Sea , Quat. Int. , 392 , 58 – 68 , doi: 10.1016/j.quaint.2015.08.023 . 

  4. Bickle , M. J. , H. J. Chapman , J. Bunbury , N. B. W. Harris , I. J. Fairchild , T. Ahmad , and C. Pomiès ( 2005 ), Relative contributions of silicate andcarbonate rocks to riverine Sr fluxes in the headwaters of the Ganges , Geochim. Cosmochim. Acta , 69 , 2221 – 2240 , doi: 10.1016/j.gca.2004.11.019 , doi: 10.1016/j.gca.2004.11.019 . 

  5. Borowski , W. S. , C. K. Paull , and W. Ussler III ( 1996 ), Marine pore‐water sulfate profiles indicate in situ methane flux from underlying gas hydrate , Geology , 24 , 655 – 658 , doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2 . 

  6. Brown , K. V. , D. M. Saffer , and B. A. Bekins ( 2001 ), Smectite diagenesis, pore‐water freshening, and fluid flow at the toe of the Nankai wedge , Earth Planet. Sci. Lett. , 194 , 97 – 109 , doi: 10.1016/S0012-821X(01)00546-5 . 

  7. Burdige , D. J. ( 2006 ), Geochemistry of Marine Sediments , Princeton Univ. Press , Princeton, N. J . 

  8. Choi , J. , J.‐H. Kim , M. E. Torres , W.‐H. Hong , J.‐W. Lee , B.‐Y. Yi , J.‐J. Bahk , and K.‐E. Lee ( 2013 ), Gas origin and migration in the Ulleung Basin, East Sea; results from the second Ulleung Basin gas hydrate drilling expedition (UBGH2) , Mar. Pet. Geol. , 47 , 113 – 124 , doi: 10.1016/j.marpetgeo.2013.05.022 . 

  9. Chough , S. K. , H. J. Lee , and S. H. Yoon ( 2000 ), Marine Geology of Korean Seas , 2nd ed., Elsevier , Amsterdam . 

  10. Compton , J. S. , M. E. Conard , and T. W. Vennemann ( 1999 ), Stable isotope evolution of volcanic ash layers during diagenesis of the Miocene Monterey Formation, California . Clays Clay Miner. , 47 , 84 – 95 , doi: 10.1346/CCMN.1999.0470109 . 

  11. Dählmann , A. , and G. J. de Lange ( 2003 ), Fluid‐sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160 , Earth Planet. Sci. Lett. , 212 , 377 – 391 , doi: 10.1016/S0012-821X(03)00227-9 . 

  12. Elderfield , H. ( 1986 ), Strontium isotope stratigraphy , Palaeogeogr. Palaeoclimatol. Palaeoecol. , 57 , 71 – 90 , doi: 10.1016/0031-0182(86)90007-6 . 

  13. Elderfield , H. , M. Kastner , and J. B. Martin ( 1990 ), Composition and sources of fluids in sediments of the Peru subduction zone , J. Geophys. Res. , 95 , 8819 – 8828 , doi: 10.1029/JB095iB06p08819 . 

  14. Elliott , W. G. and G. Matisoff ( 1996 ), Evaluation of kinetic models for the smectite to illite transformation , Clays Clay Miner. , 44 , 77 – 87 , doi: 10.1346/CCMN.1996.0440107 . 

  15. Heuer , V. B. , J. W. Pohlman , M. E. Torres , M. Elvert , and K.‐U. Hinrichs ( 2009 ), The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin , Geochim. Cosmochim. Acta , 73 , 3323 – 3336 , doi: 10.1016/j.gca.2009.03.001 . 

  16. Hong , W.‐L. , M. E. Torres , J.‐H. Kim , J. Choi , and J.‐J. Bahk ( 2013 ), Carbon cycling within the sulfate‐methane‐transition‐zone in marine sediments from the Ulleung Basin , Biogeochemistry , 115 , 129 – 148 , doi: 10.1007/s10533-012-9824-y . 

  17. Hong , W.‐L. , M. E. Torres , J.‐H. Kim , J. Choi , and J.‐J. Bahk ( 2014 ), Towards quantifying the reaction network around the sulfate‐methane‐transition‐zone in the Ulleung Basin, East Sea, with a kinetic modeling approach , Geochim. Cosmochim. Acta , 140 , 127 – 141 , doi: 10.1016/j.gca.2014.05.032 . 

  18. Hower , J. , E. V. Eslinger , M. E. Hower , and E. A. Perry ( 1976 ), Mechanism of burial metamorphism of argillaceous sediments: mineralogical and chemical evidence , Geol. Soc. Am. Bull. , 87 , 725 – 737 , doi: 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2 . 

  19. Huang W.‐L. , J. M. Longo , and D. R. Pevear ( 1993 ), An experimentally derived kinetic model for smectite‐to‐illite conversion and its use as a geothermometer , Clays Clay Miner. , 41 , 162 – 177 , doi: 10.1346/CCMN.1993.0410205 . 

  20. KIGAM ( 2011 ), Studies on Gas Hydrate Geology and Geochemistry, KIGAM research rep., GP2010‐002‐2011(2), Daejeon, Republic of Korea. 

  21. Kim , J.‐H. , M.‐H. Park , J.‐H. Chun , and J.Y. Lee ( 2011 ), Molecular and isotopic signatures in sediments and gas hydrate of the central/southwestern Ulleung Basin: high alkalinity escape fuelled by biogenically sourced methane , Geo Mar. Lett. , 31 , 37 – 49 , dol: 10.1007/s00367-010-0214-y . 

  22. Kim , J.‐H. , M. E. Torres , J. Choi , J.‐J. Bahk , M.‐H. Park , and W.‐L. Hong ( 2012 ), Inferences on gas transport based on molecular and isotopic signatures of gases at acoustic chimneys and background sites in the Ulleung Basin , Org. Geochem. , 43 , 26 – 38 , doi: 10.1016/j.orggeochem.2011.11.004 . 

  23. Kim , J.‐H. , M. E. Torres , W.‐L. Hong , J. Choi , M. Riedel , J.‐J. Bahk , and S.‐H. Kim ( 2013a ), Pore fluid chemistry from the second gas hydrate drilling expedition in the Ulleung Basin (UBGH2): source, mechanisms and consequences of fluid freshening in the central part of the Ulleung Basin, East Sea , Mar. Pet. Geol. , 47 , 99 – 112 , doi: 10.1016/j.marpetgeo.2012.12.011 . 

  24. Kim , J.‐H. , M. E. Torres , J. Y. Lee , W.‐L. Hong , M. Holland , M.‐H. Park , J. Choi , and G.‐Y. Kim ( 2013b ), Depressurization experiment of pressure cores from the central Ulleung Basin, East Sea; insights into gas chemistry , Org. Geochem. , 62 , 86 – 95 , doi: 10.1016/j.orggeochem.2013.07.010 . 

  25. Lee , G. H. , H. J. Kim , S. J. Han , and D. C. Kim ( 2001 ), Seismic stratigraphy of the deep Ulleung Basin in the East Sea (Japan Sea) back‐arc basin , Mar. Pet. Geol. , 18 , 615 – 634 , doi: 10.1016/S0264-8172(01)00016-2 . 

  26. Maher , K. , D. J. DePaolo , and J. C.‐F. Lin ( 2004 ), Rates of silicate dissolution in deep‐sea sediment: in situ measurement using 234 U/ 238 U of pore fluids , Geochim. Cosmochim. Acta , 68 , 4629 – 4648 , doi: 10.1016/j.gca.2004.04.024 . 

  27. Martin J. B. , J. M. Gieskes , M. Torres , and M. Kastner ( 1993 ), Bromine and iodine in Peru margin sediments and pore fluids: implications for fluid origins , Geochim. Cosmochim. Acta , 57 , 4377 – 4389 , doi: 10.1016/0016-7037(93)90489-J . 

  28. Martin , J. B. , M. Kastner , P. Henry , X. Le Pichon , and S. Lallemant ( 1996 ), Chemical and isotopic evidence for sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge , J. Geophys. Res. , 101 , 325 – 345 , doi: 10.1029/96JB00140 . 

  29. März , C. , A.‐K. Meinhardt , B. Schnetger , and H.‐J. Brumsack ( 2015 ), Silica diagenesis and benthic fluxes in the Arctic Ocean , Mar. Chem. , 171 , 1 – 9 , doi: 10.1016/j.marchem.2015.02.003 . 

  30. McArthur , J. M. , R. J. Howarth , and G. A. Shields ( 2012 ), Strontium isotope stratigraphy , in The Geologic Time Scale , edited by F. M. Gradstein et al., pp 127 – 144 , Elsevier , Boston . 

  31. Meng , X. , Y. Liu , X. Shi , and E. Du ( 2008 ), Nd and Sr isotopic compositions of sediments from the Yellow and Yangtze Rivers: Implications for partitioning tectonic terranes and crust weathering of the Central and Southeast China , Frontiers Earth Sci. China , 2 , 418 – 426 , doi: 10.1007/s11707-008-0054-5 . 

  32. Michalopoulos , P. , and R. C. Aller ( 1995 ), Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic element cycles , Science , 270 , 614 – 616 doi: 10.1126/science.270.5236.614 . 

  33. Palmer , M. R. , and J. M. Edmond ( 1989 ), The strontium budget of the modern ocean , Earth Planet. Sci. Lett. , 92 , 11 – 26 , doi: 10.1016/0012-821X(89)90017-4 . 

  34. Peucher‐Ehrenbrink , B. , M. W. Miller , T. Arsouze , and C. Jeandel ( 2010 ), Continental bedrock and riverine fluxes of strontium and neodymium isotopes to the oceans , Geochem. Geophys. Geosyst. , 11 , Q03016 , doi: 10.1029/2009GC002869 . 

  35. Pohlman , J. W. , M. Kaneko , V. B. Heuer , R. B. Coffin , and M. Whiticar ( 2009 ), Methane sources and production in the northern Cascadia margin gas hydrate system , Earth Planet. Sci. Lett. , 287 , 504 – 512 , doi: 10.1016/j.epsl.2009.08.037 . 

  36. Ryu , B.‐J. , et al. ( 2012 ), The Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) Expedition Report, KIGAM, Daejeon, Republic of Korea. 

  37. Saffer , D. M. , and A. W. McKiernan ( 2009 ), Evaluation of in situ smectite dehydration as a pore water freshening mechanism in the Nankai. 

  38. Saffer , D. M. M. B. Underwood , and A.W. McKiernan ( 2008 ), Evaluation of factors controlling smectite transformation and fluid production in subduction zones: application to the Nankai Trough , Island Arc , 17 , 208 – 230 , doi: 10.1111/j.1440-1738.2008.00614.x . 

  39. Schleicher , A. M. , B. A. van der Pluijm , and L.N. Warr ( 2010 ), Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California , Geology , 38 , 667 – 670 , doi: 10.1130/G31091.1 . 

  40. Scholz , F. , C. Hensen , M. Schmidt , and J. Geersen ( 2013 ), Submarine weathering of silicate minerals and the extent of pore water freshening at active continental margins , Geochim. Cosmochim. Acta , 100 , 200 – 216 , doi: 10.1016/j.gca.2012.09.043 . 

  41. Shin , W.‐J. , J.‐S. Ryu , Y. Park , and K.‐S. Lee ( 2011 ), Chemical weathering and associated CO 2 consumption in six major river basins, South Korea , Geomophology , 129 , 334 – 341 , doi: 10.1016/j.geomorph.2011.02.028 . 

  42. Solomon , E. A. , M. Kastner , G. Robertson , C. G. Wheat , H. Janasch , and E. E. Davis ( 2009 ), Long‐term hydrogeochemical records in the oceanic basement and forearc prism at the Costa Rica subduction zone , Earth Planet. Sci. Lett. , 282 , 240 – 251 , doi: 10.1016/j.epsl.2009.03.022 . 

  43. Solomon , E. A. , A. J. Spivack , M. Kastner , M. E. Torres , and G. Robertson ( 2014 ), Gas hydrate distribution and carbon sequestration through coupled microbial methanogenesis and silicate weathering in the Krishnae‐Godavari Basin, offshore India , Mar. Pet. Geol. , 58 , 233 – 253 , doi: 10.1016/j.marpetgeo.2014.08.020 . 

  44. Staudigel , H. , S.R. Hart , and S.H. Richardson ( 1981 ), Alteration of the oceanic crust: processes and timing , Earth Planet. Sci. Lett. , 52 , 311 – 327 , doi: 10.1016/0012-821X(81)90186-2 . 

  45. Tamaki , K. , and E. Honza ( 1985 ), Incipient subduction and deduction along the Eastern margin of the Japan Sea , Tectonophysics , 119 , 381 – 406 , doi: 10.1016/0040-1951(85)90047-2 . 

  46. Taylor , A. S. , J. D. Blum , A. C. Lasaga , and I. N. Maclnnis ( 2000a ), Kinetics of dissolution and Sr release during biotite and phlogopite weathering , Geochim. Cosmochim. Acta , 64 , 1191 – 1208 , doi: 10.1016/S0016-7037(99)00369-5 . 

  47. Taylor , A.S. , J. D. Blum , and A. C. Lasaga ( 2000b ), The dependence of labradorite dissolution and Sr isotope release rates on solution saturation state , Geochim. Cosmochim. Acta , 64 , 2389 – 2400 , doi: 10.1016/S0016-7037(00)00361-6 . 

  48. Teichert , B. M. A. , M. E. Torres , G. Bohrmann , and A. Eisenhauer ( 2005 ), Fluid sources, fluid pathways and diagenetic reactions across an accretionary prism revealed by Sr and B geochemistry , Earth Planet. Sci. Lett. , 239 , 106 – 121 , doi: 10.1016/j.epsl.2005.08.002 . 

  49. Teichert , B. M. A. , N. Gussone , and M. E. Torres ( 2009 ), Controls on calcium isotope fractionation in sedimentary porewaters , Earth Planet. Sci. Lett. , 279 , 373 – 382 , doi: 10.1016/j.epsl.2009.01.011 . 

  50. Torres , M. E. , B. M. A. Teichert , A. M. Tréhu , W. Borowski , and H. Tomaru ( 2004 ), Relationship of pore water freshening to accretionary processes in the Cascadia margin: fluid sources and gas hydrate abundance , Geophys. Res. Lett. , 31 , L22305 , doi: 10.1029/2004GL021219 . 

  51. Torres , M.E. , J.‐H. Kim , J. Choi , B.‐J. Ryu , J.‐J. Bahk , M. Riedel , T. S. Collett , W.‐L. Hong , and M. Kastner ( 2011 ), Occurrence of high salinity fluids associated with massive near‐seafloor gas hydrate deposits, in Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, U. K., July 17–21. 

  52. Vanneste , H. , B. A. Kelly‐Gerreyn , D. P. Connelly , R. H. James , M. Haeckel , R. E. Fisher , K. Heeschen , and R. A. Mills ( 2011 ), Spatial variation in fluid flow and geochemical fluxes across the sediment‐seawater interface at the Carlos Ribeiro mud volcano (Gulf of Cadiz) , Geochim. Cosmochim. Acta , 75 , 1124 – 1144 , doi: 10.1016/j.gca.2010.11.017 . 

  53. von Breymann , M. T. , R. Collier , and E. Suess ( 1990 ), Magnesium adsorption and ion exchange in marine sediments: a multicomponent model , Geochim. Cosmochim. Acta , 54 , 3295 – 3313 , doi: 10.1016/0016-7037(90)90286-T . 

  54. Wallmann , K. , G. Aloisi , M. Haeckel , A. Obzhirov , G. Pavlova , and P. Tishchenko ( 2006 ), Kinetics of organic matter degradation, microbialmethane generation, and gas hydrate formation in anoxic marine sediments , Geochim. Cosmochim. Acta , 70 , 3905 – 3927 , doi: 10.1016/j.gca.2006.06.003 . 

  55. Wallmann , K. , G. Aloisi , M. Haeckel , P. Tishchenko , G. Pavlova , J. Greinert , S. Kutterolf , and A. Eisenhauer ( 2008 ), Silicate weathering in anoxic marine sediments , Geochim. Cosmochim. Acta , 72 , 3067 – 3090 , doi: 10.1016/j.gca.2008.03.026 . 

  56. Wei , G. , J. Ma , Y. Liu , L. Xie , W. Lu , W. Deng , Z. Ren , T. Zeng , and Y. Yang ( 2013 ), Seasonal changes in the radiogenic and stable strontium isotopic composition of Xijiang River water: Implications for chemical weathering , Chem. Geol. , 343 , 67 – 75 , doi: 10.1016/j.chemgeo.2013.02.004 . 

  57. Whiticar , M. J. ( 1999 ), Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane , Chem. Geol. , 161 , 291 – 314 , doi: 10.1016/S0009-2541(99)00092-3 . 

  58. Wilkinson , M. , K. L. Milliken , and R. Stuart Haszeldine ( 2001 ), Systematic destruction of K‐feldspar in deeply buried rift and passive margin sandstones , J. Geol. Soc. London , 158 , 675 – 683 , doi: 10.1144/jgs.158.4.675 . 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로