$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Therapeutic Potential of Stem Cells Strategy for Cardiovascular Diseases 원문보기

Stem cells international, v.2016, 2016년, pp.4285938 -   

Lee, Chang Youn (Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-759, Republic of Korea) ,  Kim, Ran (Department of Biology Education, College of Education, Pusan National University, Busan 609-735, Republic of Korea) ,  Ham, Onju (Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary's Hospital, Incheon 404-834, Republic of Korea) ,  Lee, Jihyun (Department of Biology Education, College of Education, Pusan National University, Busan 609-735, Republic of Korea) ,  Kim, Pilseog (Department of Biology Education, College of Education, Pusan National University, Busan 609-735, Republic of Korea) ,  Lee, Seokyeon (Department of Biology Education, College of Education, Pusan National University, Busan 609-735, Republic of Korea) ,  Oh, Sekyung (Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA) ,  Lee, Hojin (Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA) ,  Lee, Minyoung (Department of Molecular Physi) ,  Kim, Jongmin ,  Chang, Woochul

Abstract AI-Helper 아이콘AI-Helper

Despite development of medicine, cardiovascular diseases (CVDs) are still the leading cause of mortality and morbidity worldwide. Over the past 10 years, various stem cells have been utilized in therapeutic strategies for the treatment of CVDs. CVDs are characterized by a broad range of pathological...

참고문헌 (110)

  1. 1 Chao T. H. Chen I. C. Tseng S. Y. Li Y. H. Pluripotent stem cell therapy in ischemic cardiovascular disease Zhonghua Minguo Xin Zang Xue Hui Za Zhi 2014 30 5 365 374 

  2. 2 Elliott P. Andersson B. Arbustini E. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases European Heart Journal 2008 29 2 270 276 10.1093/eurheartj/ehm342 2-s2.0-38349086961 17916581 

  3. 3 Chen I. Y. Matsa E. Wu J. C. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine Nature Reviews Cardiology 2016 13 6 333 349 10.1038/nrcardio.2016.36 27009425 

  4. 4 Gnecchi M. Zhang Z. Ni A. Dzau V. J. Paracrine mechanisms in adult stem cell signaling and therapy Circulation Research 2008 103 11 1204 1219 10.1161/circresaha.108.176826 2-s2.0-58149347238 19028920 

  5. 5 Tang Y. L. Zhao Q. Qin X. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction The Annals of Thoracic Surgery 2005 80 1 229 237 10.1016/j.athoracsur.2005.02.072 2-s2.0-20544450374 15975372 

  6. 6 Lee R. H. Pulin A. A. Seo M. J. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6 Cell Stem Cell 2009 5 1 54 63 10.1016/j.stem.2009.05.003 2-s2.0-67649171661 19570514 

  7. 7 Oh J. Y. Kim M. K. Shin M. S. The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury STEM CELLS 2008 26 4 1047 1055 10.1634/stemcells.2007-0737 2-s2.0-49249129381 18192235 

  8. 8 Uccelli A. Moretta L. Pistoia V. Mesenchymal stem cells in health and disease Nature Reviews Immunology 2008 8 9 726 736 10.1038/nri2395 2-s2.0-50249158511 

  9. 9 Hwang H. J. Chang W. Song B.-W. Antiarrhythmic potential of mesenchymal stem cell is modulated by hypoxic environment Journal of the American College of Cardiology 2012 60 17 1698 1706 10.1016/j.jacc.2012.04.056 2-s2.0-84867578081 22999735 

  10. 10 Geng Y.-J. Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure Annals of the New York Academy of Sciences 2003 1010 687 697 10.1196/annals.1299.126 2-s2.0-1342284231 15033813 

  11. 11 Chang W. Lee C. Y. Park J.-H. Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving mir-210 and hypoxia-inducible factor 1 Journal of Veterinary Science 2013 14 1 69 76 10.4142/jvs.2013.14.1.69 2-s2.0-84876974545 23388440 

  12. 12 Damoiseaux R. Sherman S. P. Alva J. A. Peterson C. Pyle A. D. Integrated chemical genomics reveals modifiers of survival in human embryonic stem cells STEM CELLS 2009 27 3 533 542 10.1634/stemcells.2008-0596 2-s2.0-65249102250 19074420 

  13. 13 Chang W. Kim R. Park S. I. Enhanced healing of rat calvarial bone defects with hypoxic conditioned medium from mesenchymal stem cells through increased endogenous stem cell migration via regulation of ICAM-1 targeted-microRNA-221 Molecules and Cells 2015 38 7 643 650 10.14348/molcells.2015.0050 2-s2.0-84950286167 26062554 

  14. 14 Zhao Y. Samal E. Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis Nature 2005 436 7048 214 220 10.1038/nature03817 2-s2.0-22444437609 15951802 

  15. 15 Chen J.-F. Mandel E. M. Thomson J. M. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation Nature Genetics 2006 38 2 228 233 10.1038/ng1725 2-s2.0-31744432337 16380711 

  16. 16 Sadek H. Hannack B. Choe E. Cardiogenic small molecules that enhance myocardial repair by stem cells Proceedings of the National Academy of Sciences of the United States of America 2008 105 16 6063 6068 10.1073/pnas.0711507105 2-s2.0-43149119978 18420817 

  17. 17 Caspi O. Huber I. Kehat I. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts Journal of the American College of Cardiology 2007 50 19 1884 1893 10.1016/j.jacc.2007.07.054 2-s2.0-35548974727 17980256 

  18. 18 Li Z. Wilson K. D. Smith B. Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction PLoS ONE 2009 4 12 e8443 10.1371/journal.pone.0008443 2-s2.0-77954054900 

  19. 19 Gong X. Wang P. Wu Q. Wang S. Yu L. Wang G. Human umbilical cord blood derived mesenchymal stem cells improve cardiac function in cTnT R141W transgenic mouse of dilated cardiomyopathy European Journal of Cell Biology 2016 95 1 57 67 10.1016/j.ejcb.2015.11.003 2-s2.0-84955363312 26655348 

  20. 20 Toma C. Pittenger M. F. Cahill K. S. Byrne B. J. Kessler P. D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart Circulation 2002 105 1 93 98 10.1161/hc0102.101442 2-s2.0-0036142213 11772882 

  21. 21 Rojas S. V. Martens A. Zweigerdt R. Transplantation effectiveness of induced pluripotent stem cells is improved by a fibrinogen biomatrix in an experimental model of ischemic heart failure Tissue Engineering Part A 2015 21 13-14 1991 2000 10.1089/ten.tea.2014.0537 2-s2.0-84936857565 25867819 

  22. 22 Ja P. M. M. Miao Q. Zhen Tee N. G. iPSC-derived human cardiac progenitor cells improve ventricular remodelling via angiogenesis and interstitial networking of infarcted myocardium Journal of Cellular and Molecular Medicine 2016 20 2 323 332 10.1111/jcmm.12725 2-s2.0-84955593081 26612359 

  23. 23 Kawamoto A. Gwon H.-C. Iwaguro H. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia Circulation 2001 103 5 634 637 10.1161/01.CIR.103.5.634 2-s2.0-0035814766 11156872 

  24. 24 Song F. Hua F. Li H. Cardiac stem cell transplantation with 2,3,5,4′-tetrahydroxystilbehe-2-O- β -D-glucoside improves cardiac function in rat myocardial infarction model Life Sciences 2016 158 37 45 10.1016/j.lfs.2016.06.011 27341995 

  25. 25 Sarnak M. J. Levey A. S. Schoolwerth A. C. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention Hypertension 2003 42 5 1050 1065 10.1161/01.hyp.0000102971.85504.7c 2-s2.0-0242441465 14604997 

  26. 26 Lafeber M. Spiering W. Visseren F. L. Grobbee D. E. Multifactorial prevention of cardiovascular disease in patients with hypertension: the cardiovascular polypill Current Hypertension Reports 2016 18 5, article 40 10.1007/s11906-016-0648-3 

  27. 27 Conroy R. M. Pyörälä K. Fitzgerald A. P. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project European Heart Journal 2003 24 11 987 1003 10.1016/s0195-668x(03)00114-3 2-s2.0-0038579421 12788299 

  28. 28 Perk J. De Backer G. Gohlke H. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts) European Heart Journal 2012 33 13 1635 1701 22555213 

  29. 29 Rahimi A. R. Spertus J. A. Reid K. J. Bernheim S. M. Krumholz H. M. Financial barriers to health care and outcomes after acute myocardial infarction The Journal of the American Medical Association 2007 297 10 1063 1072 10.1001/jama.297.10.1063 2-s2.0-33947242276 17356027 

  30. 30 Mookadam F. Arthur H. M. Social support and its relationship to morbidity and mortality after acute myocardial infarction: systematic overview Archives of Internal Medicine 2004 164 14 1514 1518 10.1001/archinte.164.14.1514 2-s2.0-3242796523 15277281 

  31. 31 Eaker E. D. Sullivan L. M. Kelly-Hayes M. D'Agostino R. B. Sr. Benjamin E. J. Marital status, marital strain, and risk of coronary heart disease or total mortality: the Framingham Offspring Study Psychosomatic Medicine 2007 69 6 509 513 10.1097/psy.0b013e3180f62357 2-s2.0-34547647045 17634565 

  32. 32 Rugulies R. Depression as a predictor for coronary heart disease. A review and meta-analysis American Journal of Preventive Medicine 2002 23 1 51 61 10.1016/s0749-3797(02)00439-7 2-s2.0-0036297812 12093424 

  33. 33 Smoller J. W. Pollack M. H. Wassertheil-Smoller S. Panic attacks and risk of incident cardiovascular events among postmenopausal women in the Women's Health Initiative Observational Study Archives of General Psychiatry 2007 64 10 1153 1160 10.1001/archpsyc.64.10.1153 2-s2.0-34948849644 17909127 

  34. 34 Chida Y. Steptoe A. The association of anger and hostility with future coronary heart disease. a meta-analytic review of prospective evidence Journal of the American College of Cardiology 2009 53 11 936 946 10.1016/j.jacc.2008.11.044 2-s2.0-61549138141 19281923 

  35. 35 Liu M. Li X. Sun R. Zeng Y. Chen S. Zhang P. Vitamin D nutritional status and the risk for cardiovascular disease (review) Experimental and Therapeutic Medicine 2016 11 4 1189 1193 10.3892/etm.2016.3047 2-s2.0-84958751022 27073421 

  36. 36 Andersson P. Rydberg E. Willenheimer R. Primary hyperparathyroidism and heart disease—a review European Heart Journal 2004 25 20 1776 1787 10.1016/j.ehj.2004.07.010 2-s2.0-4944227505 15474692 

  37. 37 Xiang W. Kong J. Chen S. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems American Journal of Physiology—Endocrinology and Metabolism 2005 288 1 E125 E132 10.1152/ajpendo.00224.2004 2-s2.0-19944425466 15367398 

  38. 38 O'Connell T. D. Berry J. E. Jarvis A. K. Somerman M. J. Simpson R. U. 1, 25-Dihydroxyvitamin D3 regulation of cardiac myocyte proliferation and hypertrophy American Journal of Physiology 1997 272 4, part 2 H1759 H1769 2-s2.0-33745343132 9139960 

  39. 39 Bae S. Singh S. S. Yu H. Lee J. Y. Cho B. R. Kang P. M. Vitamin D signaling pathway plays an important role in the development of heart failure after myocardial infarction Journal of Applied Physiology 2013 114 8 979 987 10.1152/japplphysiol.01506.2012 2-s2.0-84878573260 23429874 

  40. 40 Nabel E. G. Cardiovascular disease The New England Journal of Medicine 2003 349 1 60 72 10.1056/nejmra035098 2-s2.0-0037785185 12840094 

  41. 41 Sun Q. Zhang Z. Sun Z. The potential and challenges of using stem cells for cardiovascular repair and regeneration Genes and Diseases 2014 1 1 113 119 10.1016/j.gendis.2014.07.003 2-s2.0-84931826011 25642448 

  42. 42 Moreira M. L. da Costa Medeiros P. de Souza S. A. Gutfilen B. Rosado-de-Castro P. H. In vivo tracking of cell therapies for cardiac diseases with nuclear medicine Stem Cells International 2016 2016 15 3140120 10.1155/2016/3140120 

  43. 43 Bernstein H. S. Srivastava D. Stem cell therapy for cardiac disease Pediatric Research 2012 71 4, part 2 491 499 10.1038/pr.2011.61 2-s2.0-84864298142 22430385 

  44. 44 Sharma R. K. Voelker D. J. Sharma R. Reddy H. K. Understanding the application of stem cell therapy in cardiovascular diseases Stem Cells and Cloning: Advances and Applications 2012 5 1 29 37 2-s2.0-84869180663 24198536 

  45. 45 Yousefi M. Hajihoseini V. Jung W. Embryonic stem cell interactomics: the beginning of a long road to biological function Stem Cell Reviews and Reports 2012 8 4 1138 1154 10.1007/s12015-012-9400-9 2-s2.0-84870368346 22847281 

  46. 46 Kraushaar D. C. Zhao K. The epigenomics of embryonic stem cell differentiation International Journal of Biological Sciences 2013 9 10 1134 1144 10.7150/ijbs.7998 2-s2.0-84896398544 24339734 

  47. 47 Nir S. G. David R. Zaruba M. Franz W.-M. Itskovitz-Eldor J. Human embryonic stem cells for cardiovascular repair Cardiovascular Research 2003 58 2 313 323 10.1016/S0008-6363(03)00264-5 2-s2.0-0038665160 12757866 

  48. 48 Wobus A. M. Wallukat G. Hescheler J. Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca 2+ channel blockers Differentiation 1991 48 3 173 182 10.1111/j.1432-0436.1991.tb00255.x 2-s2.0-0026343418 1725163 

  49. 49 Wong S. S. Bernstein H. S. Cardiac regeneration using human embryonic stem cells: producing cells for future therapy Regenerative Medicine 2010 5 5 763 775 10.2217/rme.10.52 2-s2.0-77957320317 20868331 

  50. 50 Xiong Q. Ye L. Zhang P. Bioenergetic and functional consequences of cellular therapy: activation of endogenous cardiovascular progenitor cells Circulation Research 2012 111 4 455 468 10.1161/circresaha.112.269894 2-s2.0-84864882528 22723295 

  51. 51 Freund C. Mummery C. L. Prospects for pluripotent stem cell-derived cardiomyocytes in cardiac cell therapy and as disease models Journal of Cellular Biochemistry 2009 107 4 592 599 10.1002/jcb.22164 2-s2.0-67650034307 19449339 

  52. 52 Ebelt H. Jungblut M. Zhang Y. Cellular cardiomyoplasty: improvement of left ventricular function correlates with the release of cardioactive cytokines Stem Cells 2007 25 1 236 244 10.1634/stemcells.2006-0374 2-s2.0-33846024314 16973829 

  53. 53 Ivey K. N. Muth A. Arnold J. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells Cell Stem Cell 2008 2 3 219 229 10.1016/j.stem.2008.01.016 2-s2.0-39749140336 18371447 

  54. 54 Weber D. Heisig J. Kneitz S. Wolf E. Eilers M. Gessler M. Mechanisms of epigenetic and cell-type specific regulation of Hey target genes in ES cells and cardiomyocytes Journal of Molecular and Cellular Cardiology 2015 79 79 88 10.1016/j.yjmcc.2014.11.004 2-s2.0-84913573573 25446183 

  55. 55 Perin E. C. Geng Y.-J. Willerson J. T. Adult stem cell therapy in perspective Circulation 2003 107 7 935 938 10.1161/01.cir.0000057526.10455.bd 2-s2.0-0037465433 12600902 

  56. 56 Murata M. Tohyama S. Fukuda K. Impacts of recent advances in cardiovascular regenerative medicine on clinical therapies and drug discovery Pharmacology and Therapeutics 2010 126 2 109 118 10.1016/j.pharmthera.2010.01.010 2-s2.0-77951090909 20156482 

  57. 57 Fuchs E. Segre J. A. Stem cells: a new lease on life Cell 2000 100 1 143 155 10.1016/s0092-8674(00)81691-8 2-s2.0-0034614379 10647939 

  58. 58 Poulsom R. Alison M. R. Forbes S. J. Wright N. A. Adult stem cell plasticity The Journal of Pathology 2002 197 4 441 456 10.1002/path.1176 12115861 

  59. 59 Bianco P. Riminucci M. Gronthos S. Robey P. G. Bone marrow stromal stem cells: nature, biology, and potential applications STEM CELLS 2001 19 3 180 192 10.1634/stemcells.19-3-180 2-s2.0-0034988303 11359943 

  60. 60 Ohnishi S. Sumiyoshi H. Kitamura S. Nagaya N. Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions FEBS Letters 2007 581 21 3961 3966 10.1016/j.febslet.2007.07.028 2-s2.0-34547685923 17662720 

  61. 61 Cai B. Tan X. Zhang Y. Mesenchymal stem cells and cardiomyocytes interplay to prevent myocardial hypertrophy Stem Cells Translational Medicine 2015 4 12 1425 1435 10.5966/sctm.2015-0032 2-s2.0-84949636644 26586774 

  62. 62 Ripa R. S. Haack-Sørensen M. Wang Y. Bone marrow derived mesenchymal cell mobilization by granulocyte-colony stimulating factor after acute myocardial infarction: results from the Stem Cells in Myocardial Infarction (STEMMI) trial Circulation 2007 116 11, supplement I24 I30 10.1161/circulationaha.106.678649 2-s2.0-34748892483 17846310 

  63. 63 Volarevic V. Arsenijevic N. Lukic M. L. Stojkovic M. Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus Stem Cells 2011 29 1 5 10 10.1002/stem.556 2-s2.0-79951834186 21280154 

  64. 64 Hahn J.-Y. Cho H.-J. Kang H.-J. Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction Journal of the American College of Cardiology 2008 51 9 933 943 10.1016/j.jacc.2007.11.040 2-s2.0-39549105786 18308163 

  65. 65 Siciliano C. Chimenti I. Ibrahim M. Cardiosphere conditioned media influence the plasticity of human mediastinal adipose tissue-derived mesenchymal stem cells Cell Transplantation 2015 24 11 2307 2322 10.3727/096368914X685771 2-s2.0-84944220053 26531290 

  66. 66 De Ugarte D. A. Alfonso Z. Zuk P. A. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow Immunology Letters 2003 89 2-3 267 270 10.1016/s0165-2478(03)00108-1 2-s2.0-0141862027 14556988 

  67. 67 Schäffler A. Büchler C. Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies Stem Cells 2007 25 4 818 827 10.1634/stemcells.2006-0589 2-s2.0-34147107634 17420225 

  68. 68 Casteilla L. Planat-Bénard V. Cousin B. Laharrague P. Bourin P. Vascular and endothelial regeneration Current Stem Cell Research and Therapy 2010 5 2 141 144 10.2174/157488810791268546 2-s2.0-77954067693 19941453 

  69. 69 Perea-Gil I. Monguió-Tortajada M. Gálvez-Montón C. Bayes-Genis A. Borràs F. E. Roura S. Preclinical evaluation of the immunomodulatory properties of cardiac adipose tissue progenitor cells using umbilical cord blood mesenchymal stem cells: a direct comparative study BioMed Research International 2015 2015 9 439808 10.1155/2015/439808 2-s2.0-84925679883 

  70. 70 Lee M. Jeong S. Y. Ha J. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo Biochemical and Biophysical Research Communications 2014 446 4 983 989 10.1016/j.bbrc.2014.03.051 2-s2.0-84899493349 24657442 

  71. 71 Yannarelli G. Dayan V. Pacienza N. Lee C.-J. Medin J. Keating A. Human umbilical cord perivascular cells exhibit enhanced cardiomyocyte reprogramming and cardiac function after experimental acute myocardial infarction Cell Transplantation 2013 22 9 1651 1666 10.3727/096368912x657675 2-s2.0-84883532879 23043977 

  72. 72 Beltrami A. P. Barlucchi L. Torella D. Adult cardiac stem cells are multipotent and support myocardial regeneration Cell 2003 114 6 763 776 10.1016/S0092-8674(03)00687-1 2-s2.0-10744228523 14505575 

  73. 73 Oettgen P. Boyle A. J. Schulman S. P. Hare J. M. Cardiac stem cell therapy. Need for optimization of efficacy and safety monitoring Circulation 2006 114 4 353 358 10.1161/circulationaha.106.639385 16864740 

  74. 74 Asahara T. Murohara T. Sullivan A. Isolation of putative progenitor endothelial cells for angiogenesis Science 1997 275 5302 964 967 10.1126/science.275.5302.964 2-s2.0-0031019745 9020076 

  75. 75 Oikonomou E. Siasos G. Zaromitidou M. Atorvastatin treatment improves endothelial function through endothelial progenitor cells mobilization in ischemic heart failure patients Atherosclerosis 2015 238 2 159 164 10.1016/j.atherosclerosis.2014.12.014 2-s2.0-84918802891 25525743 

  76. 76 Takahashi K. Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors Cell 2006 126 4 663 676 10.1016/j.cell.2006.07.024 2-s2.0-33747195353 16904174 

  77. 77 González F. Boué S. Izpisua Belmonte J. C. Methods for making induced pluripotent stem cells: Reprogramming à la carte Nature Reviews Genetics 2011 12 4 231 242 10.1038/nrg2937 2-s2.0-79952899995 

  78. 78 Csobonyeiova M. Polak S. Danisovic L. Perspectives of induced pluripotent stem cells for cardiovascular system regeneration Experimental Biology and Medicine 2015 240 5 549 556 10.1177/1535370214565976 25595188 

  79. 79 Narsinh K. Narsinh K. H. Wu J. C. Derivation of human induced pluripotent stem cells for cardiovascular disease modeling Circulation Research 2011 108 9 1146 1156 10.1161/CIRCRESAHA.111.240374 2-s2.0-79955583972 21527744 

  80. 80 Schenke-Layland K. Rhodes K. E. Angelis E. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages Stem Cells 2008 26 6 1537 1546 10.1634/stemcells.2008-0033 2-s2.0-48649097575 18450826 

  81. 81 Tong Z. Solanki A. Hamilos A. Application of biomaterials to advance induced pluripotent stem cell research and therapy The EMBO Journal 2015 34 8 987 1008 10.15252/embj.201490756 2-s2.0-84927692818 25766254 

  82. 82 Jia F. Wilson K. D. Sun N. A nonviral minicircle vector for deriving human iPS cells Nature Methods 2010 7 3 197 199 10.1038/nmeth.1426 2-s2.0-77649275936 20139967 

  83. 83 Ieda M. Fu J.-D. Delgado-Olguin P. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors Cell 2010 142 3 375 386 10.1016/j.cell.2010.07.002 2-s2.0-77955321344 20691899 

  84. 84 Chen J. X. Krane M. Deutsch M.-A. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5 Circulation Research 2012 111 1 50 55 10.1161/circresaha.112.270264 2-s2.0-84865393215 22581928 

  85. 85 Song K. Nam Y.-J. Luo X. Heart repair by reprogramming non-myocytes with cardiac transcription factors Nature 2012 485 7400 599 604 10.1038/nature11139 2-s2.0-84863626782 22660318 

  86. 86 Jayawardena T. M. Egemnazarov B. Finch E. A. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes Circulation Research 2012 110 11 1465 1473 10.1161/CIRCRESAHA.112.269035 2-s2.0-84861642380 22539765 

  87. 87 Burridge P. W. Matsa E. Shukla P. Chemically defined generation of human cardiomyocytes Nature Methods 2014 11 8 855 860 10.1038/nmeth.2999 2-s2.0-84905242471 24930130 

  88. 88 Hou P. Li Y. Zhang X. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds Science 2013 341 6146 651 654 10.1126/science.1239278 2-s2.0-84881256653 23868920 

  89. 89 Lu X. Zhao T. Clinical therapy using iPSCs: hopes and challenges Genomics, Proteomics & Bioinformatics 2013 11 5 294 298 10.1016/j.gpb.2013.09.002 2-s2.0-84886407915 

  90. 90 Masumoto H. Ikuno T. Takeda M. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration Scientific Reports 2014 4, article 6716 10.1038/srep06716 2-s2.0-84925966468 

  91. 91 Tong M. Lv Z. Liu L. Mice generated from tetraploid complementation competent iPS cells show similar developmental features as those from ES cells but are prone to tumorigenesis Cell Research 2011 21 11 1634 1637 10.1038/cr.2011.143 2-s2.0-80555131195 21876560 

  92. 92 Okita K. Ichisaka T. Yamanaka S. Generation of germline-competent induced pluripotent stem cells Nature 2007 448 7151 313 317 10.1038/nature05934 2-s2.0-34249880066 17554338 

  93. 93 Zhao T. Zhang Z.-N. Rong Z. Xu Y. Immunogenicity of induced pluripotent stem cells Nature 2011 474 7350 212 216 10.1038/nature10135 2-s2.0-79957807595 21572395 

  94. 94 Pasi C. E. Dereli-Öz A. Negrini S. Genomic instability in induced stem cells Cell Death and Differentiation 2011 18 5 745 753 10.1038/cdd.2011.9 2-s2.0-79953894440 21311564 

  95. 95 Funakoshi S. Miki K. Takaki T. Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes Scientific Reports 2016 6 19111 10.1038/srep19111 2-s2.0-84953897607 

  96. 96 El Andaloussi S. Mäger I. Breakefield X. O. Wood M. J. A. Extracellular vesicles: biology and emerging therapeutic opportunities Nature Reviews Drug Discovery 2013 12 5 347 357 10.1038/nrd3978 2-s2.0-84877585949 23584393 

  97. 97 Simons M. Raposo G. Exosomes—vesicular carriers for intercellular communication Current Opinion in Cell Biology 2009 21 4 575 581 10.1016/j.ceb.2009.03.007 2-s2.0-67949097489 19442504 

  98. 98 Mathivanan S. Simpson R. J. ExoCarta: a compendium of exosomal proteins and RNA Proteomics 2009 9 21 4997 5000 10.1002/pmic.200900351 2-s2.0-70350449455 19810033 

  99. 99 Mittelbrunn M. Gutiérrez-Vázquez C. Villarroya-Beltri C. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells Nature Communications 2011 2 1, article 282 10.1038/ncomms1285 2-s2.0-79955070767 

  100. 100 Lai R. C. Arslan F. Lee M. M. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury Stem Cell Research 2010 4 3 214 222 10.1016/j.scr.2009.12.003 2-s2.0-77952293014 20138817 

  101. 101 Lee C. Mitsialis S. A. Aslam M. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension Circulation 2012 126 22 2601 2611 10.1161/circulationaha.112.114173 2-s2.0-84870239895 23114789 

  102. 102 Khan M. Nickoloff E. Abramova T. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction Circulation Research 2015 117 1 52 64 10.1161/circresaha.117.305990 2-s2.0-84938578435 25904597 

  103. 103 Barile L. Lionetti V. Cervio E. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction Cardiovascular Research 2014 103 4 530 541 10.1093/cvr/cvu167 2-s2.0-84907337461 25016614 

  104. 104 Vrijsen K. R. Sluijter J. P. G. Schuchardt M. W. L. Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells Journal of Cellular and Molecular Medicine 2010 14 5 1064 1070 10.1111/j.1582-4934.2010.01081.x 2-s2.0-77954724494 20465578 

  105. 105 Chen L. Wang Y. Pan Y. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury Biochemical and Biophysical Research Communications 2013 431 3 566 571 10.1016/j.bbrc.2013.01.015 2-s2.0-84873713781 23318173 

  106. 106 Lai R. C. Chen T. S. Lim S. K. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease Regenerative Medicine 2011 6 4 481 492 10.2217/rme.11.35 2-s2.0-79960223740 21749206 

  107. 107 Yde P. Mengel B. Jensen M. H. Krishna S. Trusina A. Modeling the NF- κ B mediated inflammatory response predicts cytokine waves in tissue BMC Systems Biology 2011 5, article 115 10.1186/1752-0509-5-115 2-s2.0-79960559730 

  108. 108 Khosravi A. Cutler C. M. Kelly M. H. Determination of the elimination half-life of fibroblast growth factor-23 The Journal of Clinical Endocrinology & Metabolism 2007 92 6 2374 2377 10.1210/jc.2006-2865 2-s2.0-34347229793 17374707 

  109. 109 Takahashi Y. Nishikawa M. Shinotsuka H. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection Journal of Biotechnology 2013 165 2 77 84 10.1016/j.jbiotec.2013.03.013 2-s2.0-84876729225 23562828 

  110. 110 Biancone L. Bruno S. Deregibus M. C. Tetta C. Camussi G. Therapeutic potential of mesenchymal stem cell-derived microvesicles Nephrology Dialysis Transplantation 2012 27 8 3037 3042 10.1093/ndt/gfs168 2-s2.0-84864598081 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로