$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Investigation of Pozzolanic Reaction in Nanosilica-Cement Blended Pastes Based on Solid-State Kinetic Models and 29 Si MAS NMR 원문보기

Materials, v.9 no.2, 2016년, pp.99 -   

Moon, Jiho (New Transportation Research Center, Korea Railroad Research Institute (KRRI), Uiwang-si, Gyeonggi-do 16105, Korea) ,  Reda Taha, Mahmoud M. (jmoon1979@krri.re.kr) ,  Youm, Kwang-Soo (Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131, USA) ,  Kim, Jung J. (mrtaha@unm.edu)

Abstract AI-Helper 아이콘AI-Helper

The incorporation of pozzolanic materials in concrete has many beneficial effects to enhance the mechanical properties of concrete. The calcium silicate hydrates in cement matrix of concrete increase by pozzolanic reaction of silicates and calcium hydroxide. The fine pozzolanic particles fill spaces...

주제어

참고문헌 (42)

  1. 1. Yu P. Kirpatrick R.J. Poe B. McMillan P.F. Cong X. Structure of calcium silicate hydrate (C–S–H): Near-, Mid- and Far- infrared spectroscopy J. Am. Ceram. Soc. 1999 82 742 748 10.1111/j.1151-2916.1999.tb01826.x 

  2. 2. Richardson I.G. Tobermorite/Jennite- and Tobermorite/Calcium Hydroxide-Based models for the structure of C–S–H: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-durnace slag, Metakaolin, or silica fume Cem. Concr. Res. 2004 34 1733 1777 

  3. 3. Korb J.-P. Monteilhet L. McDonald P.J. Mitchell J. Microstructure and texture of hydrated cement-based materials: A proton field cycling relaxometry approach Cem. Concr. Res. 2007 37 297 302 10.1016/j.cemconres.2006.08.002 

  4. 4. Garcia Lodeiro I. Macphee D.E. Palomo A. Fernandez-Jimenez A. Effect of alkalis on fresh C–S–H gels. FTIR analysis Cem. Concr. Res. 2009 39 147 153 10.1016/j.cemconres.2009.01.003 

  5. 5. Scrivener K. Kirkpatrick R.J. Innovation in use and research on cementitious material Cem. Concr. Res. 2008 38 128 136 10.1016/j.cemconres.2007.09.025 

  6. 6. Stark J. Recent advances in the field of cement hydration and microstructural analysis Cem. Concr. Res. 2011 41 666 678 10.1016/j.cemconres.2011.03.028 

  7. 7. Jennings H.M. A model for the microstructure of calicum silicate hydrate in cement paste Cem. Concr. Res. 2000 30 101 116 10.1016/S0008-8846(99)00209-4 

  8. 8. Allen A.J. Thomas J.J. Analysis of C–S–H gel and cement paste by small-angle neutron scattering Cem. Concr. Res. 2007 37 319 324 10.1016/j.cemconres.2006.09.002 

  9. 9. Patural L. Porion P. van Damme H. Govin A. Grosseau P. Ruot B. Deves O. A pulsed field gradient and NMR imaging investigations of the water retention mechanism by cellulose ethers in mortars Cem. Concr. Res. 2010 40 1378 1385 10.1016/j.cemconres.2010.04.001 

  10. 10. Larbi J.A. Microstructure of the interfacial zone around aggregate particles in concrete Heron 1993 38 1 69 

  11. 11. Jennings H.M. Tennis P.D. Model for the developing microstructure in Portland cement pastes J. Am. Ceram. Soc. 1994 77 3161 3172 10.1111/j.1151-2916.1994.tb04565.x 

  12. 12. Halim S.C. Brunner T.J. Grass R.N. Bohner M. Stark W.J. Preparation of an ultra fast binding cement from calcium silicate-based mixed oxide nanoparticles Nanotechnology 2007 18 1 6 10.1088/0957-4484/18/39/395701 21730426 

  13. 13. Sanchez F. Sobolev K. Nanotechnology in concrete—A review Constr. Build. Mater. 2010 24 2060 2071 10.1016/j.conbuildmat.2010.03.014 

  14. 14. Harsh S. Arora A.K. Thomas V. Ali M.M. Studies on cement hydration in the presence of nanosilica Cem. Int. 2014 3 74 78 

  15. 15. Lee H.-S. Cho H.-K. Wang X.-Y. Experimental investigation and theoretical modeling of nanosilica activity in concrete J. Nanomater. 2014 2014 10.1155/2014/102392 

  16. 16. DeWindt L. Deneele D. Maubec N. Kinetics of lime/bentonite pozzolanic reactions at 20 and 50 °C: Batch tests and modeling Cem. Concr. Res. 2014 59 34 42 10.1016/j.cemconres.2014.01.024 

  17. 17. Li X. Gao H. Scrivens W.A. Fei D. Thakur V. Sutton M.A. Reynolds A.P. Myrick M.L. Structural and mechanical characterization of nanoclay-reinforced agarose nanocomposites Nanotechnology 2005 16 2020 2029 10.1088/0957-4484/16/10/006 20817964 

  18. 18. Chaipanich A. Nochaiya T. Wongkeo W. Torkittikul P. Compressive strength and microstructure of carbon nanotubes-fly ash cement composites Mater. Sci. Eng. A 2010 527 1063 1067 10.1016/j.msea.2009.09.039 

  19. 19. Jo B.-W. Kim C.-H. Tae G.-H. Park J.-B. Characteristics of cement mortar with nano-SiO 2 particles Constr. Build. Mater. 2007 21 1351 1355 10.1016/j.conbuildmat.2005.12.020 

  20. 20. Lothenbach B. Saout G.L. Gallucci E. Scrivener K. Influence of limestone on the hydration of Portland cements Cem. Concr. Res. 2008 38 848 860 10.1016/j.cemconres.2008.01.002 

  21. 21. Gaitero J.J. Ibarra Y.S. Campillo I. Silica nanoparticle addition to control the calcium-leaching in cement-based materials Phys. State Solid 2006 203 1313 1318 10.1002/pssa.200566168 

  22. 22. Gaitero J.J. Campillo I. Guerrero A. Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles Cem. Concr. Res. 2008 38 1112 1118 10.1016/j.cemconres.2008.03.021 

  23. 23. Kim J.J. Fan T. Reda Taha M.M. Homogenization model examining the effect of nanosilica on concrete strength and stiffness Trans. Res. Rec. 2010 2141 28 35 10.3141/2141-06 

  24. 24. Choolaei M. Rashidi A.M. Ardjmand M. Yadegari A. The effect of nanosilica on the physical properties of oil well cement Mater. Sci. Eng. A 2012 538 288 294 10.1016/j.msea.2012.01.045 

  25. 25. Norris A. Saafi M. Romine P. Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors Constr. Build. Mater. 2008 22 111 120 10.1016/j.conbuildmat.2006.05.047 

  26. 26. Barnes P. Structure and Performance of Cements Applied Science Publishers London, UK; New York, NY, USA 1983 

  27. 27. Booth F. A note on the theory of surface diffusion reactions Trans. Faraday Soc. 1948 44 796 801 10.1039/tf9484400796 

  28. 28. Khawam A. Flanagan D.R. Solid-state kinetic models: Basic and mathematical fundamentals J. Phys. Chem. B 2006 110 17315 17328 10.1021/jp062746a 16942065 

  29. 29. Kim J.J. Rahman M.K. Al-Majed A.A. Al-Zahrani M.M. Reda Taha M.M. Nanosilica effects on composition and silicate polymerization in hardened cement paste cured under high temperature and pressure Cem. Concr. Compos. 2013 43 78 85 10.1016/j.cemconcomp.2013.07.002 

  30. 30. Crank J. The Mathematics of Diffusion 2nd ed. Clarendon Press Oxford, UK 1975 

  31. 31. ASTM-C305 Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency ASTM International West Conshohocken, PA, USA 1999 

  32. 32. Macomber R.S. A Complete Introduction to Modern NMR Spectroscopy John Wiley & Sons New York, NY, USA 1998 

  33. 33. Lippmaa E. Mägi M. Samoson A. Engelhardt G. Grimmer A.R. Structural studies of silicates by solid-state high-resolution 29 Si NMR Am. Chem. Soc. 1980 102 4889 4893 10.1021/ja00535a008 

  34. 34. Wieker W. Grimmer A.-R. Winkler A. Mägi M. Tarmak M. Lippmaa E. Solid-state high-resolution 29 Si NMR spectroscopy of synthetic 14 Å, 11 Å and 9 Å tobermorites Cem. Concr. Res. 1982 12 333 339 10.1016/0008-8846(82)90081-3 

  35. 35. Young J.F. Investigations of calcium silicate hydrate structure using silicon-29 nuclear magnetic resonance spectroscopy Am. Cerm. Soc. 1988 71 C118 C120 

  36. 36. Grutzeck M. Benesi A. Fanning B. Silicon-29 magic-angle spinning nuclear magnetic resonance study of calcium silicate hydrates Am. Ceram. Soc. 1989 72 665 668 10.1111/j.1151-2916.1989.tb06192.x 

  37. 37. Saoût G.L. Le’colier E. Rivereau A. Zanni H. Chemical structure of cement aged at normal and elevated temperatures and pressures, Part II: Low permeability class G oilwell cement Cem. Concr. Res. 2006 36 428 433 10.1016/j.cemconres.2005.11.005 

  38. 38. Bell G.M.M. Benstedm J. Glasser F.P. Lachowski E.E. Roberts D.R. Taylor M.J. Study of calcium silicate hydrates by solid state high resolution 29 Si nuclear magnetic resonance Adv. Cem. Res. 1990 3 23 37 10.1680/adcr.1990.3.9.23 

  39. 39. Cong X. Kirkpatrick R.J. 29 Si MAS NMR study of the structure of calcium silicate hydrate Adv. Cem. Based Mater. 1996 3 144 156 10.1016/S1065-7355(96)90046-2 

  40. 40. Yajun J. Cahyadi J.H. Simulation of silica fume blended cement hydration Mater. Struct. 2004 37 397 404 10.1617/12684 

  41. 41. Monasterio M. Gaitero J.J. Erkizia E. Bustos A.M.G. Miccio L.A. Dolado J.S. Cerveny S. Effect of addition of silica- and amine functionalized silica-nanoparticles on the microstructure of calcium silicate hydrate (C–S–H) gel J. Colloid Interface Sci. 2015 450 109 118 10.1016/j.jcis.2015.02.066 25801139 

  42. 42. Ten B.Y. Calculation of SiO 2 diffusion coefficients based on kinetic curves of silica grain dissolution Glass Ceram. 2004 61 13 14 10.1023/B:GLAC.0000034061.78803.a4 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로