$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effective protein model structure refinement by loop modeling and overall relaxation 원문보기

Proteins, v.84, 2016년, pp.293 - 301  

Lee, Gyu Rie (Department of Chemistry, Seoul National University, Seoul, 151‐) ,  Heo, Lim (747, Republic of Korea) ,  Seok, Chaok (Department of Chemistry, Seoul National University, Seoul, 151‐)

EDISON 유발 논문

계산과학플랫폼 EDISON을 활용하여 발표된 논문

국가컴퓨팅센터 유발 논문

Abstract AI-Helper 아이콘AI-Helper

ABSTRACTProtein structures predicted by state‐of‐the‐art template‐based methods may still have errors when the template proteins are not similar enough to the target protein. Overall target structure may deviate from the template structures owing to differences in sequences. ...

주제어

참고문헌 (45)

  1. Zhang Y. Protein structure prediction: when is it useful? Curr Opin Struct Biol 2009 ; 19 : 145 – 155 . 

  2. Cavasotto CN , Phatak SS. Homology modeling in drug discovery: current trends and applications . Drug Discov Today 2009 ; 14 : 676 – 683 . 

  3. Giorgetti A , Raimondo D , Miele AE , Tramontano A. Evaluating the usefulness of protein structure models for molecular replacement . Bioinformatics 2005 ; 21 ( Suppl 2 ): ii72 – 76 . 

  4. Martí‐Renom MA , Stuart AC , Fiser A , Sánchez R , Melo F , Sali A. Comparative protein structure modeling of genes and genomes . Annu Rev Biophys Biomol Struct 2000 ; 29 : 291 – 325 . 

  5. Baker D , Sali A. Protein structure prediction and structural genomics . Science 2001 ; 294 : 93 – 96 . 

  6. Zhang Y. Progress and challenges in protein structure prediction . Curr Opin Struct Biol 2008 ; 18 : 342 – 348 . 

  7. Lee MR , Tsai J , Baker D , Kollman PA. Molecular dynamics in the endgame of protein structure prediction . J Mol Biol 2001 ; 313 : 417 – 430 . 

  8. Chen JH , Brooks CL. Can molecular dynamics simulations provide high‐resolution refinement of protein structure? Proteins 2007 ; 67 : 922 – 930 . 

  9. Ishitani R , Terada T , Shimizu K. Refinement of comparative models of protein structure by using multicanonical molecular dynamics simulations . Mol Simulat 2008 ; 34 : 327 – 336 . 

  10. Raval A , Piana S , Eastwood MP , Dror RO , Shaw DE. Refinement of protein structure homology models via long, all‐atom molecular dynamics simulations . Proteins 2012 ; 80 : 2071 – 2079 . 

  11. Mirjalili V , Feig M. Protein structure refinement through structure selection and averaging from molecular dynamics ensembles . J Chem Theory Comput 2013 ; 9 : 1294 – 1303 . 

  12. Mirjalili V , Noyes K , Feig M. Physics‐based protein structure refinement through multiple molecular dynamics trajectories and structure averaging . Proteins 2014 ; 82 : 196 – 207 . 

  13. Chopra G , Summa CM , Levitt M. Solvent dramatically affects protein structure refinement . Proc Natl Acad Sci U S A 2008 ; 105 : 20239 – 20244 . 

  14. Fan H , Mark AE. Refinement of homology‐based protein structures by molecular dynamics simulation techniques . Protein Sci 2004 ; 13 : 211 – 220 . 

  15. Cornell WD , Cieplak P , Bayly CI , Gould IR , Merz KM , Ferguson DM , Spellmeyer DC , Fox T , Caldwell JW , Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (1995, 117, 5179‐5197) . J Am Chem Soc 1996 ; 118 : 2309 – 2309 . 

  16. Best RB , Zhu X , Shim J , Lopes PEM , Mittal J , Feig M , MacKerell AD. Optimization of the additive CHARMM all‐atom protein force field targeting improved sampling of the backbone φ, ψ and side‐chain χ(1) and χ(2) dihedral angles . J Chem Theory Comput 2012 ; 8 : 3257 – 3273 . 

  17. Jorgensen WL , Maxwell DS , Tirado‐Rives J. Development and testing of the OPLS all‐atom force field on conformational energetics and properties of organic liquids . J Am Chem Soc 1996 ; 118 : 11225 – 11236 . 

  18. Kaminski GA , Friesner RA , Tirado‐Rives J , Jorgensen WL. Evaluation and reparametrization of the OPLS‐AA force field for proteins via comparison with accurate quantum chemical calculations on peptides . J Phys Chem B 2001 ; 105 : 6474 – 6487 . 

  19. Gront D , Kmiecik S , Blaszczyk M , Ekonomiuk D , Koliński A. Optimization of protein models . Wires Comput Mol Sci 2012 ; 2 : 479 – 493 . 

  20. Zhou H , Zhou Y. Distance‐scaled, finite ideal‐gas reference state improves structure‐derived potentials of mean force for structure selection and stability prediction . Protein Sci 2002 ; 11 : 2714 – 2726 . 

  21. Zhu J , Xie L , Honig B. Structural refinement of protein segments containing secondary structure elements: Local sampling, knowledge‐based potentials, and clustering . Proteins 2006 ; 65 : 463 – 479 . 

  22. Zhu J , Fan H , Periole X , Honig B , Mark AE. Refining homology models by combining replica‐exchange molecular dynamics and statistical potentials . Proteins 2008 ; 72 : 1171 – 1188 . 

  23. Yang Y , Zhou Y. Specific interactions for ab initio folding of protein terminal regions with secondary structures . Proteins 2008 ; 72 : 793 – 803 . 

  24. Summa CM , Levitt M. Near‐native structure refinement using in vacuo energy minimization . Proc Natl Acad Sci U S A 2007 ; 104 : 3177 – 3182 . 

  25. Samudrala R , Moult J. An all‐atom distance‐dependent conditional probability discriminatory function for protein structure prediction . J Mol Biol 1998 ; 275 : 895 – 916 . 

  26. Rodrigues JP , Levitt M Chopra G. KoBaMIN: a knowledge‐based minimization web server for protein structure refinement . Nucleic Acids Res 2012 ; 40 : W323 – W328 . 

  27. Kortemme T , Morozov AV , Baker D. An orientation‐dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein‐protein complexes . J Mol Biol 2003 ; 326 : 1239 – 1259 . 

  28. Heo L , Park H , Seok C. GalaxyRefine: protein structure refinement driven by side‐chain repacking . Nucleic Acids Res 2013 ; 41 : W384 – 388 . 

  29. Jagielska A , Wroblewska L , Skolnick J. Protein model refinement using an optimized physics‐based all‐atom force field . Proc Natl Acad Sci U S A 2008 ; 105 : 8268 – 8273 . 

  30. Zhang J , Liang Y , Zhang Y. Atomic‐level protein structure refinement using fragment‐guided molecular dynamics conformation sampling . Structure 2011 ; 19 : 1784 – 1795 . 

  31. Nugent T , Cozzetto D , Jones DT. Evaluation of predictions in the CASP10 model refinement category . Proteins 2014 ; 82 ( Suppl 2 ): 98 – 111 . 

  32. Krivov GG , Shapovalov MV , Dunbrack RL , Jr. Improved prediction of protein side‐chain conformations with SCWRL4 . Proteins 2009 ; 77 : 778 – 795 . 

  33. Bakan A , Meireles LM , Bahar I. ProDy: protein dynamics inferred from theory and experiments . Bioinformatics 2011 ; 27 : 1575 – 1577 . 

  34. Tirion MM. Large amplitude elastic motions in proteins from a single‐parameter, atomic analysis . Phys Rev Lett 1996 ; 77 : 1905 – 1908 . 

  35. Wallner B , Elofsson A. Pcons5: combining consensus, structural evaluation and fold recognition scores . Bioinformatics 2005 ; 21 : 4248 – 4254 . 

  36. Xiang Z , Soto CS , Honig B. Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction . Proc Natl Acad Sci U S A 2002 ; 99 : 7432 – 7437 . 

  37. Park H , Lee GR , Heo L , Seok C. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments . PLoS One 2014 ; 9 : e113811 

  38. Lee J , Lee D , Park H , Coutsias EA , Seok C. Protein loop modeling by using fragment assembly and analytical loop closure . Proteins 2010 ; 78 : 3428 – 3436 . 

  39. Coutsias EA , Seok C , Jacobson MP , Dill KA. A kinematic view of loop closure . J Comput Chem 2004 ; 25 : 510 – 528 . 

  40. Lee J , Scheraga HA , Rackovsky S. New optimization method for conformational energy calculations on polypeptides: Conformational space annealing . J Comput Chem 1997 ; 18 : 1222 – 1232 . 

  41. Kopp J , Bordoli L , Battey JND , Kiefer F , Schwede T. Assessment of CASP7 predictions for template‐based modeling targets . Proteins 2007 ; 69 : 38 – 56 . 

  42. Kryshtafovych A , Monastyrskyy B , Fidelis K. CASP prediction center infrastructure and evaluation measures in CASP10 and CASP ROLL . Proteins 2014 ; 82 ( Suppl 2 ): 7 – 13 . 

  43. Chen VB , Arendall WB , III , Headd JJ , Keedy DA , Immormino RM , Kapral GJ , Murray LW , Richardson JS , Richardson DC. MolProbity: all‐atom structure validation for macromolecular crystallography . Acta Crystallogr D Biol Crystallogr 2010 ; 66 : 12 – 21 . 

  44. Park H , Seok C. Refinement of unreliable local regions in template‐based protein models . Proteins 2012 ; 80 : 1974 – 1986 . 

  45. Park H , Ko J , Joo K , Lee J , Seok C , Lee J. Refinement of protein termini in template‐based modeling using conformational space annealing . Proteins 2011 ; 79 : 2725 – 2734 . 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로