$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Antidiabetic effect of chitosan oligosaccharide (GO2KA1) is mediated via inhibition of intestinal alpha‐glucosidase and glucose transporters and PPARγ expression

BioFactors, v.43 no.1, 2017년, pp.90 - 99  

Yu, Seok‐Yeong (Department of Nutrition University of Massachusetts Amherst MA USA) ,  Kwon, Young‐In (Department of Food and Nutrition Hannam University Daejeon Korea) ,  Lee, Chan (Department of Food Science and Technology Chung‐) ,  Apostolidis, Emmanouil (Ang University Kyeonggi‐) ,  Kim, Young‐Cheul (Do Korea)

Abstract AI-Helper 아이콘AI-Helper

AbstractWe have previously reported that administration of low molecular weight chitosan oligosaccharide (GO2KA1) significantly suppressed postprandial blood glucose rise with increased plasma adiponectin and HbA1c levels in animals and humans. However, the cellular mechanisms whereby GO2KA1 exerts ...

참고문헌 (43)

  1. Economic Costs of Diabetes in the U.S. in 2012. Diabetes care, vol.36, no.4, 1033-1046.

  2. Wells, Brian J., Roth, Rachel, Nowacki, Amy S., Arrigain, Susana, Yu, Changhong, Rosenkrans Jr., Wayne A., Kattan, Michael W.. Prediction of morbidity and mortality in patients with type 2 diabetes. PeerJ, vol.1, e87-.

  3. Qiao, Qing, Jousilahti, Pekka, Eriksson, Johan, Tuomilehto, Jaakko. Predictive Properties of Impaired Glucose Tolerance for Cardiovascular Risk Are Not Explained by the Development of Overt Diabetes During Follow-Up. Diabetes care, vol.26, no.10, 2910-2914.

  4. Cohen, Ricardo, Pechy, Fernando, Petry, Tarissa, Correa, José Luis, Caravatto, Pedro Paulo, Tzanno-Martins, Carmen. Bariatric and metabolic surgery and microvascular complications of type 2diabetes mellitus. Jornal brasileiro de nefrologia : 'orgão oficial de Sociedades Brasileira e Latino-Americana de Nefrologia, vol.37, no.3,

  5. DeFronzo, R.A., Simonson, D., Ferrannini, E.. Hepatic and peripheral insulin resistance: A common feature of Type 2 (non-insulin-dependent) and Type 1 (insulin-dependent) diabetes mellitus. Diabetologia, vol.23, no.4,

  6. Singh, Ranee, Rand, Jacquie S, Coradini, Marcia, Morton, John M. Effect of acarbose on postprandial blood glucose concentrations in healthy cats fed low and high carbohydrate diets. Journal of feline medicine and surgery, vol.17, no.10, 848-857.

  7. Miao, Ming, Jiang, Bo, Cui, Steve W., Zhang, Tao, Jin, Zhengyu. Slowly Digestible Starch-A Review. Critical reviews in food science and nutrition, vol.55, no.12, 1642-1657.

  8. Chiasson, Jean-Louis, Josse, Robert G, Gomis, Ramon, Hanefeld, Markolf, Karasik, Avraham, Laakso, Markku. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. The Lancet, vol.359, no.9323, 2072-2077.

  9. Rosen, Evan D, Sarraf, Pasha, Troy, Amy E, Bradwin, Gary, Moore, Kathryn, Milstone, David S, Spiegelman, Bruce M, Mortensen, Richard M. PPARγ Is Required for the Differentiation of Adipose Tissue In Vivo and In Vitro. Molecular cell, vol.4, no.4, 611-617.

  10. Rosen, Evan D., Spiegelman, Bruce M.. MOLECULAR REGULATION OF ADIPOGENESIS. Annual review of cell and developmental biology, vol.16, 145-171.

  11. Heilbronn, L, Smith, S R, Ravussin, E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity, vol.28, no.suppl4, S12-S21.

  12. Samad, Fahumiya, Ruf, Wolfram. Inflammation, obesity, and thrombosis. Blood, vol.122, no.20, 3415-3422.

  13. Lehmann, Jürgen M., Moore, Linda B., Smith-Oliver, Tracey A., Wilkison, William O., Willson, Timothy M., Kliewer, Steven A.. An Antidiabetic Thiazolidinedione Is a High Affinity Ligand for Peroxisome Proliferator-activated Receptor γ (PPARγ). The Journal of biological chemistry, vol.270, no.22, 12953-12956.

  14. Maeda, Norikazu, Takahashi, Masahiko, Funahashi, Tohru, Kihara, Shinji, Nishizawa, Hitoshi, Kishida, Ken, Nagaretani, Hiroyuki, Matsuda, Morihiro, Komuro, Ryutaro, Ouchi, Noriyuki, Kuriyama, Hiroshi, Hotta, Kikuko, Nakamura, Tadashi, Shimomura, Iichiro, Matsuzawa, Yuji. PPARγ Ligands Increase Expression and Plasma Concentrations of Adiponectin, an Adipose-Derived Protein. Diabetes, vol.50, no.9, 2094-2099.

  15. Boden, Guenther, Cheung, Peter, Mozzoli, Maria, Fried, Susan K. Effect of thiazolidinediones on glucose and fatty acid metabolism in patients with type 2 diabetes. Metabolism : clinical and experimental, vol.52, no.6, 753-759.

  16. Endocrinol. Metab. Yamaguchi S. E643 289 2005 Activators of AMP‐activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3‐L1 adipocytes. American journal of physiology 

  17. Liu, Qingqing, Gauthier, Marie‐Soleil, Sun, Lei, Ruderman, Neil, Lodish, Harvey. Activation of AMP‐activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl‐CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.24, no.11, 4229-4239.

  18. Bennett, Wendy L., Maruthur, Nisa M., Singh, Sonal, Segal, Jodi B., Wilson, Lisa M., Chatterjee, Ranee, Marinopoulos, Spyridon S., Puhan, Milo A., Ranasinghe, Padmini, Block, Lauren, Nicholson, Wanda K., Hutfless, Susan, Bass, Eric B., Bolen, Shari. Comparative Effectiveness and Safety of Medications for Type 2 Diabetes: An Update Including New Drugs and 2-Drug Combinations. Annals of internal medicine, vol.154, no.9, 602-.

  19. Jo, Sung-Hoon, Ha, Kyoung-Soo, Moon, Kyoung-Sik, Kim, Jong-Gwan, Oh, Chen-Gum, Kim, Young-Cheul, Apostolidis, Emmanouil, Kwon, Young-In. Molecular Weight Dependent Glucose Lowering Effect of Low Molecular Weight Chitosan Oligosaccharide (GO2KA1) on Postprandial Blood Glucose Level in SD Rats Model. International journal of molecular sciences, vol.14, no.7, 14214-14224.

  20. Mattaveewong, T., Wongkrasant, P., Chanchai, S., Pichyangkura, R., Chatsudthipong, V., Muanprasat, C.. Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling. Carbohydrate polymers, vol.145, 30-36.

  21. Qiao, Y., Bai, X.F., Du, Y.G.. Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. International immunopharmacology, vol.11, no.1, 121-127.

  22. Ju, Chuanxia, Yue, Wang, Yang, Zhihong, Zhang, Quanfang, Yang, Xue, Liu, Zhantao, Zhang, Fang. Antidiabetic Effect and Mechanism of Chitooligosaccharides. Biological & pharmaceutical bulletin, vol.33, no.9, 1511-1516.

  23. Yuan, Wen-Peng, Liu, Bing, Liu, Chang-Heng, Wang, Xiao-Jun, Zhang, Mian-Song, Meng, Xiu-Mei, Xia, Xue-Kui. Antioxidant activity of chito-oligosaccharides on pancreatic islet cells in streptozotocin-induced diabetes in rats. World journal of gastroenterology : WJG, vol.15, no.11, 1339-.

  24. BMC Kim J. G. 272 14 2014 Effect of long‐term supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action 

  25. Jo, Sung-Hoon, Ha, Kyoung-Soo, Lee, Jong-Wook, Kim, Young-Cheul, Apostolidis, Emmanouil, Kwon, Young-In. The Reduction Effect of Low Molecular Weight Chitosan Oligosaccharide (GO2KA1) on Postprandial Blood Glucose Levels in Healthy Individuals. Food science and biotechnology, vol.23, no.3, 971-973.

  26. Kim, Hee Jun, Ahn, Hyeon Yeong, Kwak, Jung Hyun, Shin, Dong Yeob, Kwon, Young-In, Oh, Chen-Gum, Lee, Jong Ho. The effects of chitosan oligosaccharide (GO2KA1) supplementation on glucose control in subjects with prediabetes. Food & function, vol.5, no.10, 2662-2669.

  27. Fleet, James C., Wang, Liyong, Vitek, Olga, Craig, Bruce A., Edenberg, Howard J.. Gene expression profiling of Caco-2 BBe cells suggests a role for specific signaling pathways during intestinal differentiation. Physiological genomics, vol.13, no.1, 57-68.

  28. Cho, Kae Won, Lee, Ok-Hwan, Banz, William J., Moustaid-Moussa, Naima, Shay, Neil F., Kim, Young-Cheul. Daidzein and the daidzein metabolite, equol, enhance adipocyte differentiation and PPARγ transcriptional activity. The Journal of nutritional biochemistry, vol.21, no.9, 841-847.

  29. Messer, M., Dahlqvist, A.. A one-step ultramicro method for the assay of intestinal disaccharidases. Analytical biochemistry, vol.14, no.3, 376-392.

  30. Chae, Su Young, Jang, Mi-Kyeong, Nah, Jae-Woon. Influence of molecular weight on oral absorption of water soluble chitosans. Journal of controlled release : official journal of the Controlled Release Society, vol.102, no.2, 383-394.

  31. Wright, Harold M., Clish, Clary B., Mikami, Toshiyuki, Hauser, Stefanie, Yanagi, Kazunori, Hiramatsu, Ryuji, Serhan, Charles N., Spiegelman, Bruce M.. A Synthetic Antagonist for the Peroxisome Proliferator-activated Receptor γ Inhibits Adipocyte Differentiation. The Journal of biological chemistry, vol.275, no.3, 1873-1877.

  32. Kim, Jin Nam, Chang, In Youb, Kim, Hyun Il, Yoon, Sang Pil. Long-term effects of chitosan oligosaccharide in streptozotocin-induced diabetic rats. Islets, vol.1, no.2, 111-116.

  33. Kellett, George L., Brot-Laroche, Edith, Mace, Oliver J., Leturque, Armelle. Sugar Absorption in the Intestine: The Role of GLUT2. Annual review of nutrition, vol.28, 35-54.

  34. Röder, Pia V., Geillinger, Kerstin E., Zietek, Tamara S., Thorens, Bernard, Koepsell, Hermann, Daniel, Hannelore. The Role of SGLT1 and GLUT2 in Intestinal Glucose Transport and Sensing. PloS one, vol.9, no.2, e89977-.

  35. Ikeda, Ikuo., Sugano, Michihiro., Yoshida, Katsuko., Sasaki, Eiji., Iwamoto, Yasushi., Hatano, Kouta.. Effects of chitosan hydrolyzates on lipid absorption and on serum and liver lipid concentration in rats. Journal of agricultural and food chemistry, vol.41, no.3, 431-435.

  36. Hollenberg, Anthony N., Susulic, Vedrana S., Madura, John P., Zhang, Bei, Moller, David E., Tontonoz, Peter, Sarraf, Pasha, Spiegelman, Bruce M., Lowell, Bradford B.. Functional Antagonism between CCAAT/Enhancer Binding Protein-α and Peroxisome Proliferator-activated Receptor-γ on the Leptin Promoter. The Journal of biological chemistry, vol.272, no.8, 5283-5290.

  37. Iwaki, Masanori, Matsuda, Morihiro, Maeda, Norikazu, Funahashi, Tohru, Matsuzawa, Yuji, Makishima, Makoto, Shimomura, Iichiro. Induction of Adiponectin, a Fat-Derived Antidiabetic and Antiatherogenic Factor, by Nuclear Receptors. Diabetes, vol.52, no.7, 1655-1663.

  38. J. Microbiol. Biotechnol. Cho E. J. 80 18 2008 Chitosan oligosaccharides inhibit adipogenesis in 3T3‐L1 adipocytes 

  39. Rahman, Md. Atiar, Kumar, Suresh G., Kim, Sang Woo, Hwang, Hye Jin, Baek, Yu Mi, Lee, Sung Hak, Hwang, Hee Sun, Shon, Yun Hee, Nam, Kyung Soo, Yun, Jong Won. Proteomic analysis for inhibitory effect of chitosan oligosaccharides on 3T3-L1 adipocyte differentiation. Proteomics, vol.8, no.3, 569-581.

  40. Choi, E.H., Yang, H.P., Chun, H.S.. Chitooligosaccharide ameliorates diet-induced obesity in mice and affects adipose gene expression involved in adipogenesis and inflammation. Nutrition research, vol.32, no.3, 218-228.

  41. Berger, Joel, Leibowitz, Mark D., Doebber, Thomas W., Elbrecht, Alex, Zhang, Bei, Zhou, Gaochou, Biswas, Chhabi, Cullinan, Catherine A., Hayes, Nancy S., Li, Ying, Tanen, Michael, Ventre, John, Wu, Margaret S., Berger, Gregory D., Mosley, Ralph, Marquis, Robert, Santini, Conrad, Sahoo, Soumya P., Tolman, Richard L., Smith, Roy G., Moller, David E.. Novel Peroxisome Proliferator-activated Receptor (PPAR) γ and PPARδ Ligands Produce Distinct Biological Effects. The Journal of biological chemistry, vol.274, no.10, 6718-6725.

  42. Chiu, Chen-Yuan, Chan, Im-Lam, Yang, Tsung-Han, Liu, Shing-Hwa, Chiang, Meng-Tsan. Supplementation of Chitosan Alleviates High-Fat Diet-Enhanced Lipogenesis in Rats via Adenosine Monophosphate (AMP)-Activated Protein Kinase Activation and Inhibition of Lipogenesis-Associated Genes. Journal of agricultural and food chemistry, vol.63, no.11, 2979-2988.

  43. Muanprasat, C., Wongkrasant, P., Satitsri, S., Moonwiriyakit, A., Pongkorpsakol, P., Mattaveewong, T., Pichyangkura, R., Chatsudthipong, V.. Activation of AMPK by chitosan oligosaccharide in intestinal epithelial cells: Mechanism of action and potential applications in intestinal disorders. Biochemical pharmacology, vol.96, no.3, 225-236.

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로