$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Electrochemically Active Thickness of Solid Oxide Fuel Cell Electrodes: Effectiveness Model Prediction 원문보기

Bulletin of the Korean chemical society, v.38 no.4, 2017년, pp.477 - 483  

Nam, Jin Hyun (School of Mechanical Engineering Daegu University Gyungsan 38453 Korea)

Abstract AI-Helper 아이콘AI-Helper

The three‐phase boundaries (TPBs) in the electrodes of solid oxide fuel cells (SOFCs) have different activity because of the distributed nature of the electrochemical reactions. The electrochemically active thickness (EAT) is a good measure to evaluate the extension of the active reaction zon...

참고문헌 (29)

  1. 10.1002/9781118878330 

  2. Fuel Cell Fundamentals O'Hayre R. 2009 

  3. Zhao, Feng, Virkar, Anil V.. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. Journal of power sources, vol.141, no.1, 79-95.

  4. Haanappel, V.A.C., Mertens, J., Rutenbeck, D., Tropartz, C., Herzhof, W., Sebold, D., Tietz, F.. Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs. Journal of power sources, vol.141, no.2, 216-226.

  5. Brett, Daniel J. L., Atkinson, Alan, Brandon, Nigel P., Skinner, Stephen J.. Intermediate temperature solid oxide fuel cells. Chemical Society reviews, vol.37, no.8, 1568-1578.

  6. Kilner, John A., Burriel, Mónica. Materials for Intermediate-Temperature Solid-Oxide Fuel Cells. Annual review of materials research, vol.44, 365-393.

  7. Moon, H., Kim, S.D., Hyun, S.H., Kim, H.S.. Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. International journal of hydrogen energy, vol.33, no.6, 1758-1768.

  8. Wang, Z., Zhang, N., Qiao, J., Sun, K., Xu, P.. Improved SOFC performance with continuously graded anode functional layer. Electrochemistry communications, vol.11, no.6, 1120-1123.

  9. Song, H.S., Lee, S., Lee, D., Kim, H., Hyun, S.H., Kim, J., Moon, J.. Functionally-graded composite cathodes for durable and high performance solid oxide fuel cells. Journal of power sources, vol.195, no.9, 2628-2632.

  10. Iwai, Hiroshi, Shikazono, Naoki, Matsui, Toshiaki, Teshima, Hisanori, Kishimoto, Masashi, Kishida, Ryo, Hayashi, Daisuke, Matsuzaki, Katsuhisa, Kanno, Daisuke, Saito, Motohiro, Muroyama, Hiroki, Eguchi, Koichi, Kasagi, Nobuhide, Yoshida, Hideo. Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique. Journal of power sources, vol.195, no.4, 955-961.

  11. Wilson, J.R., Cronin, J.S., Barnett, S.A.. Linking the microstructure, performance and durability of Ni-yttria-stabilized zirconia solid oxide fuel cell anodes using three-dimensional focused ion beam-scanning electron microscopy imaging. Scripta materialia, vol.65, no.2, 67-72.

  12. Cronin, J.S., Chen-Wiegart, Y.c.K., Wang, J., Barnett, S.A.. Three-dimensional reconstruction and analysis of an entire solid oxide fuel cell by full-field transmission X-ray microscopy. Journal of power sources, vol.233, 174-179.

  13. Costamagna, Paola, Costa, Paolo, Antonucci, Vincenzo. Micro-modelling of solid oxide fuel cell electrodes. Electrochimica acta, vol.43, no.3, 375-394.

  14. Costamagna, Paola, Costa, Paolo, Arato, Elisabetta. Some more considerations on the optimization of cermet solid oxide fuel cell electrodes. Electrochimica acta, vol.43, no.8, 967-972.

  15. Brown, M., Primdahl, S., Mogensen, M.. Structure/Performance Relations for Ni/Yttria-Stabilized Zirconia Anodes for Solid Oxide Fuel Cells. Journal of the Electrochemical Society : JES, vol.147, no.2, 475-.

  16. Virkar, Anil V, Chen, Jong, Tanner, Cameron W, Kim, Jai-Woh. The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid state ionics, vol.131, no.1, 189-198.

  17. Jeon, Dong Hyup, Nam, Jin Hyun, Kim, Charn-Jung. Microstructural Optimization of Anode-Supported Solid Oxide Fuel Cells by a Comprehensive Microscale Model. Journal of the Electrochemical Society : JES, vol.153, no.2, A406-.

  18. Duong, Anh T., Mumm, Daniel R.. Microstructural Optimization by Tailoring Particle Sizes for LSM-YSZ Solid Oxide Fuel Cell Composite Cathodes. Journal of the Electrochemical Society : JES, vol.159, no.1, B39-B52.

  19. Shearing, P.R., Brett, D.J.L., Brandon, N.P.. Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques. International materials reviews, vol.55, no.6, 347-363.

  20. Hussain, M.M., Li, X., Dincer, I.. A numerical investigation of modeling an SOFC electrode as two finite layers. International journal of hydrogen energy, vol.34, no.7, 3134-3144.

  21. Cai, Q., Adjiman, C.S., Brandon, N.P.. Investigation of the active thickness of solid oxide fuel cell electrodes using a 3D microstructure model. Electrochimica acta, vol.56, no.28, 10809-10819.

  22. Zheng, K., Li, L., Ni, M.. Investigation of the electrochemical active thickness of solid oxide fuel cell anode. International journal of hydrogen energy, vol.39, no.24, 12904-12912.

  23. Miyawaki, K., Kishimoto, M., Iwai, H., Saito, M., Yoshida, H.. Comprehensive understanding of the active thickness in solid oxide fuel cell anodes using experimental, numerical and semi-analytical approach. Journal of power sources, vol.267, 503-514.

  24. Enrico, Anna, Cannarozzo, Marco, Costamagna, Paola. Modeling Analysis of Bi-Layer Ni-(ZrO2)x(Y2O3)1−x Anodes for Anode-Supported Intermediate Temperature-Solid Oxide Fuel Cells. Energies, vol.7, no.9, 5647-5674.

  25. Enrico, Anna, Aliakbarian, Bahar, Perego, Patrizia, Costamagna, Paola. Micro-Modelling of IT-SOFC Electrodes Manufactured through Electrospinning. ECS transactions, vol.68, no.1, 857-865.

  26. Onaka, H, Iwai, H, Kishimoto, M, Saito, M, Yoshida, H, Brus, G, Szmyd, J S. Development of a charge-transfer distribution model for stack simulation of solid oxide fuel cells. Journal of physics. Conference series, vol.745, 032148-.

  27. Shin, D., Nam, J.H.. An Effectiveness Model for Electrochemical Reactions in Electrodes of Intermediate-Temperature Solid Oxide Fuel Cells. Electrochimica acta, vol.171, 1-6.

  28. Shin, D., Baek, S.M., Nam, J.H., Kim, C.J.. Efficient microscale simulation of intermediate-temperature solid oxide fuel cells based on the electrochemical effectiveness concept. Computers & chemical engineering, vol.90, 268-277.

  29. Baek, S. M., Shin, D., Sohn, S., Nam, J. H.. An Electrochemical Effectiveness Model and Its Implication for Performance Loss Due to Electrode Microstructural Degradation in Solid Oxide Fuel Cells. Fuel cells, vol.16, no.5, 591-599.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로